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Abstract

We show that inflation risk is priced in the cross-section of US stock returns with a
price of inflation risk that is comparable in magnitude to that of the aggregate market.
The inflation risk premium varies over time conditional on the nominal-real covariance, the
time-varying relation between inflation and the real economy. Using a consumption-based
equilibrium asset pricing model, we argue that inflation is priced because it predicts real
consumption growth. The historical changes in the predictability of consumption with
inflation, which are mediated by the nominal-real covariance, can account for the size,
variability, predictability and sign-reversals —last observed in the 2000s— in the inflation
risk premium.

JEL Classification Codes: G11, G12, G13
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Introduction

In this paper, we show that inflation risk is priced in the cross-section of stock returns and
that this price is strongly time-varying. We estimate an unconditional inflation risk premium
of -4.2% for a high-minus-low decile inflation beta portfolio, or 1.4% per unit of inflation beta,
which corresponds to a Sharpe ratio of -0.30. Thus, in magnitude, the price of inflation risk
is comparable to the price of aggregate stock market risk. An unconditional negative price
of risk means that historically, on average, high inflation corresponds to bad states of nature:
investors are willing to accept lower returns when holding securities that are good hedges against
inflation.

Recent studies show that inflation does not always signal a bad state of the economy (Bekaert
and Wang (2010), Campbell et al. (2013), and David and Veronesi (2014)). Consistent with
this observation, we find that the nominal-real covariance - which is strongly time-varying - is an
economically large and statistically significant predictor of the conditional price of inflation risk
(using both asymptotic and bootstrap inference). The nominal-real covariance is measured as
the slope coefficient of a rolling regression of real consumption growth on lagged inflation, and
therefore indicates whether inflation shocks provide good or bad macroeconomic news at a given
point in time. A one standard deviation change in the nominal-real covariance is associated
with a change in expected return of 4.5% for the high-minus-low inflation beta portfolio, or
1.5% per unit beta, which is similar in magnitude to the unconditional price of inflation risk.

In addition to the price of risk, the inflation betas of stocks - the quantity of inflation risk
- also vary distinctly with the nominal-real covariance. Unconditionally, the cross-section of
inflation exposures is wide, with persistent and statistically significant inflation betas. Among
the ten inflation beta-sorted portfolios, a one standard deviation change in the nominal-real
covariance leads to a change in inflation beta of 1.55 on average, which is about half of the
cross-sectional spread in inflation betas. This change translates to an expected return of about

2.2%. Although the effect of the nominal-real covariance on the price of risk and the quantity



of risk are correlated, our evidence suggests that both channels are important as determinants
of inflation risk premia in expected stock returns. To be precise, variation in both the quantity
and price of risk contribute to time-variation in the level of inflation risk premia, whereas it is
mostly variation in the price of risk that drives time-variation in the cross-sectional spread of
inflation risk premia.

By studying the cross-section of stock returns, we not only uncover a new source of in-
formation about the inflation risk premium in the economy, but also provide insights about
the distribution and pricing of inflation risk of individual firms. Measures of the inflation risk
premium have had a natural starting point in the yield curve. With the development of sophis-
ticated no-arbitrage term structure models and the emergence of Treasury Protected Inflation
Securities (TIPS), estimates of the inflation risk premium in the bond market have become
more reliable and widely available.! Another conventional way to estimate the inflation pre-
mium is to study the joint time-series behavior of inflation and aggregate market returns. A
landmark example is Modigliani and Cohn (1979), who find a negative correlation between in-
flation and the S&P500 returns over the 1970’s and propose an explanation based on inflation
illusion. Other recent economic explanations of the inflation premium in the aggregate market
are based on important contributions by Wachter (2006) using habit formation, Gabaix (2008)
using rare disasters, and Bansal and Shaliastovich (2010) using long-run risk. If the fundamen-
tal mechanisms of the real effects of inflation originate at the level of individual firms, studying
the cross-section of stocks can provide valuable additional information that is masked in the
aggregate market and the yield curve. Our findings show that the cross-section of stock returns
is a rich source of information about the inflation risk premium.

We develop an equilibrium model that rationalizes the observed inflation premium by ar-

guing that inflation today predicts real consumption growth in the future. Unconditionally, as

! Ang and Piazzesi (2003), Ang, Piazzesi and Wei (2006), Ang, Bekaert and Wei (2007, 2008), Singleton, Dai
and Yang (2007), Singleton, Le and Qiang (2010), Singleton and Le (2010), Haubrick, Pennacchi, and Ritchken
(2008), Gurkaynak, Sack, and Wright (2010), Chen, Liu, Cheng (2010), Campbell et al. (2013).



pointed out by Piazzesi and Schneider (2005), inflation predicts consumption growth negatively.
In our model, this generates the negative unconditional price of inflation risk observed in the
data. Conditionally, the predictability of consumption growth with inflation is determined, in
sign and magnitude, by the time-varying nominal-real covariance. Our model uses this time-
varying relation between inflation and consumption to generate the dynamics of the price of
inflation risk, as well as of the quantity of risk, consistent with our empirical estimates. The
model takes the stochastic processes for consumption, inflation, and the nominal-real covariance
as given and asset prices are then determined endogenously through the representative agent’s
Euler equation. Based on estimated processes for inflation, consumption, and their predictive
regressions, and using reasonable values for preference parameters, we show that the model can
quantitatively replicate the observed conditional and unconditional inflation risk premiums.

To generate inflation premiums consistent with the data, our model has four key ingredients,
all of which are necessary. The first ingredient - as already mentioned - is that inflation predicts
future real consumption growth. In full-sample regressions of consumption growth on inflation
with constant coefficients, a one percent inflation this month is associated with a decrease of half
a percent in consumption growth over the next 12 months. However, the R? of this regression
is only slightly over 1%. Allowing for time-varying slope coefficients that may also change sign
- the nominal-real covariance - the R? increases to over 10%.

The second ingredient is that inflation is persistent and follows an ARMA(1,1) process.
Inflation persistence is widely documented in the literature, for example in Fuhrer and Moore
(1995), Stock and Watson (2005), Campbell and Viceira (2001) and Ang, Bekaert and Wei
(2007), and the ARMA(1,1) feature is similar to Fama and Gibbons (1984), Vassalou (2000),
and Campbell and Viceira (2001). That inflation is persistent will be important in our model to
quantitatively match the inflation premium: more persistent inflation induces a larger market
price of inflation risk because it affects consumption growth for a longer period of time.

The MA(1) part of the ARMA(1,1) structure is the third ingredient and ascertains that

innovations to inflation and consumption have a time-varying conditional covariance, which



is the model’s theoretical counterpart of the nominal-real covariance. Consequently, inflation
predicts future consumption over longer horizons in a time-varying way.

The fourth ingredient is a representative agent with recursive Epstein-Zin-Weil (EZ) utility.
With EZ preferences, shocks to expectations about future consumption growth are priced in
addition to shocks to consumption growth itself. Since inflation predicts consumption growth,
inflation shocks are priced in our model. This property of EZ utility is explored by many
authors in the macro-finance literature.

Our empirical results are robust in a number of important dimensions. First, aside from sort-
ing stocks on their exposure to inflation, we present consistent evidence on the time-varying
price and quantity of inflation risk for a maximum-correlation inflation-mimicking portfolio
(Breeden et al., 1989) as well as the inflation risk premium estimated using a Fama-MacBeth
cross-sectional regression for individual stocks. Second, we show large and significant differ-
ences in the inflation risk premium when we split the sample in months where the nominal-real
covariance is historically low versus high. Third, our evidence does not depend on a particular
measure of the nominal-real covariance. We find quantitatively and qualitatively similar ev-
idence using either the covariance between inflation and future industrial production growth,
which effectively treats inflation as a recession state variable of the type advocated in Cochrane
(2005, Ch.9) and Koijen et al. (2013), or using the stock market beta of the long-term Treasury
bond, as in Campbell et al. (2013). Fourth, although inflation betas contain a large industry
component, our evidence on the inflation risk premium is robust when we use only within- or
across-industry variation in exposures. This evidence highlights that even within an industry
there is enough information to identify the inflation risk premium. Fifth, all of our results
carry through when we control in our predictive regressions for benchmark predictors as well

as for exposure to benchmark asset pricing factors.? Finally, we perform a truly out-of-sample

2The benchmark predictors are the dividend yield, term spread and default spread as well as the consumption-
wealth ratio of Lettau and Ludvigson (2001a, 2001b). The benchmark factors are MKT, SMB, HML, and MOM,
combined in the CAPM (Sharpe (1964), Lintner (1965) and Mossin (1966)), the Fama-French three-factor model
(Fama and French (1993)), and the Fama-French-Carhart model (Carhart (1997)).



exercise using real-time inflation, inspired by the approach of Ang et al. (2012).

Our contribution to the literature is in establishing that the cross-section of stock returns
contains an inflation risk premium that is varying considerably over time. Chen, Roll and Ross
(1986), Ang et al. (2012) and Duarte and Blomberger (2012) also estimate the inflation risk
premium in the cross-section of portfolios or individual stocks, but do not analyze whether
the risk premium is time-varying. We extend recent bond market evidence in arguing that
the nominal-real covariance is an important driver of time series variation in the inflation
risk premium and, in particular, of its recent reversal in sign. Campbell et al. (2013) show
that nominal bond risks also vary over time with the nominal-real covariance and document
a consistent change in sign of term premiums in U.S. government bond yields over the last
decade. Campbell et al. (2014) analyze the monetary policy drivers of these changes in bond
risk (premiums). Furthermore, Kang and Pflueger (2013) find that the nominal-real covariance
affects corporate bond yields (above and beyond government bond yields) in six developed
economies through a credit channel, whereby a firm’s real liabilities and default rates change
with inflation. Our findings show similar effects for the stock market.

The remainder of the paper is organized as follows. In Section I we describe how to measure
inflation risk in the cross-section of stocks. In Section II we estimate the inflation risk premium,
both unconditionally and conditional on the nominal-real covariance. In Section III we explain
our results in the context of an equilibrium model in which the relation between inflation and
consumption is time-varying. In Section IV we calibrate the model to the data. In Section V

we present a number of robustness checks. We conclude in Section VI.

1 Inflation Risk

In this section we describe our data sources, our approach to measuring inflation risk in the
cross-section of stocks, and analyze the time-varying relation between inflation and real con-

sumption growth.



1.1 Data

Monthly inflation (II;) is the percentage change in the seasonally-adjusted Consumer Price
Index for All Urban Consumers (CPI) available from the U.S. Bureau of Labor Statistics. We
measure monthly nominal consumption (C;) growth using the seasonally-adjusted aggregate
nominal consumption expenditures on nondurables and services from the National Income and
Product Accounts (NIPA) Table 2.8.5. Population numbers come from NIPA Table 2.6 and
price deflator series from NIPA Table 2.8.4, which we use to construct the time series of per
capita real consumption growth. Seasonally-adjusted industrial production growth is from the
FRED® database of the St. Louis FED and the ten-year constant maturity treasury bond
return is from CRSP. In our asset pricing tests, we use all ordinary common stocks traded on
the NYSE, AMEX, and NASDAQ (excluding firms with negative book equity) from CRSP. The
CRSP value-weighted market portfolio, the one-month t-bill return, benchmark asset pricing
factors, and industry portfolios are from Kenneth French’s website. Table 1 presents descriptive
statistics for the sample over which we run our asset pricing tests: July 1962 to December 2014.
The start of the sample period coincides with the introduction of AMEX stocks in the CRSP

file and is common to most empirical studies of the cross-section.

1.2 Inflation Betas

At the end of each sample month ¢, we measure the exposure of firm ¢ to inflation by estimating
its historical “beta” of excess returns, R;;, with respect to monthly innovations in inflation.
Following Fama and Gibbons (1984), Vassalou (2000) and Campbell and Viceira (2001), we
filter out these innovations, denoted ur, using an ARMA(1,1)-model. We estimate inflation
betas using a weighted least-squares (WLS) regression over an expanding window that uses
all observations from the first month the stock is included in the sample up to month ¢. The
WLS weights are exponentially decaying in their distance to t. The expanding window ensures

that we use as much information as possible, whereas an exponential decay in weights ensures



that the estimated exposure gives most weight to the most recent information. We require that
stocks have at least 24 out of the last 60 months of returns available and use past information

only in the estimation. Thus, the estimator of a stock’s inflation risk, S, is given by

t
(@, 6H,i,t> = arg;nin Z K(7)(Riz — i — BH,i,tuH,T)Q (1)
Qi ,PT11,4,t =1
—t—7|h log(2
with weights K(7) = exp(—[t — 7| h) and b — 0g(2) 2)

Sooyexp(—|t — 7| k) U

so that the half-life of the weights K (1) converges to 60 months for large ¢.
Following Elton et al. (1978) and Cosemans et al. (2012), we transform the estimated E[-;

using a Vasicek (1973) adjustment

Bhie = Pic + — (Bre) — [meancswn,i,t) _6H,i,t]; (3)
varrs(Prie) + varcs(ﬁn,z‘,t)]

where the subscripts T'S and C'S denote means and variances taken over the time-series and
cross-sectional dimension, respectively. Each 6/1%: is a weighted average of the stock-specific
beta estimated in the time series and the average of all betas in the cross-section of month ¢,
where the former receives a larger weight when it is estimated more precisely. From this point
forward, inflation betas refer to the WLS and Vasicek-adjusted betas and we drop the hat and
superscript v.

We show in Section 5.2 that our conclusions are robust to (i) estimating inflation betas
using a 60-month rolling window; (ii) controlling for benchmark traded asset pricing factors in
Equation 1; and, (iii) using alternative measures of inflation, including the difference between
inflation and the short rate (as a measure of inflation innovations) and a truly out-of-sample

exercise using inflation in the real-time vintage CPI series.



1.3 Inflation-Sorted Portfolios

We create thirty value-weighted portfolios by performing a two-way sort of all stocks into
portfolios at the intersection of ten inflation beta deciles and three size groups. The size groups
are defined by the 20th and 50th percentiles of last month’s NYSE market capitalization (the
Micro, Small, and Big groups of Fama and French (2008)). We then collapse the thirty portfolios
into ten size-controlled inflation beta-sorted portfolios by averaging over the three size groups
in each inflation beta decile. On one hand, the smallest of stocks are illiquid, not in the set
of stocks typically held by institutions that care most about inflation (such as pension funds),
and their betas are harder to estimate. On the other hand, Ang et al. (2012) find that the best
inflation hedgers in the CRSP file are the smallest stocks. To not favor either hypothesis, in
our main tests we follow previous literature and use the full cross-section of stocks, but give
equal weight to each size group in the inflation risk premium. With a burn-in period of 60
months, this leaves us with a sample of post-ranking returns from July 1967 to December 2014.
In a robustness check, we analyze the inflation risk premium within size groups and control for

additional characteristics, such as book-to-market and momentum.

1.4 The Time-Varying Relation Between Inflation and Consumption

Inflation is risky when it either indicates good or bad news about the state of the economy.
To this end, in this section we analyze the relation between inflation and future consump-
tion growth. In Panel A of Table 2, we present the results from simple regressions of future

consumption growth from month ¢+ 1 to t + K, K = {1, 3,6, 12}, on inflation over month ¢:

ACii1rk = dy +dF¥ T+ ek (4)



We see that the unconditional relation between inflation and consumption is negative, consistent
with previous evidence in, e.g., Piazzesi and Schneider (2006).> Over our sample period from
July 1967 to December 2014, however, the coefficient on inflation is not significantly different
from zero at any horizon.

As already noted in Bekaert and Wang (2010) and Campbell et al. (2014), among others, this
unconditional regression masks important variation over time. To quantify this time-variation

and demonstrate its economic magnitude, we perform the following two-stage test:

ACt+1:t+K = dg’K + d(i’K(CL{il + bflet) + Ctr1:t+-K, where (5)
A05+1:5+K = a{(_l +b1{(_1H8+€S+l:S+K7 S = 1,,t—K (6)

In the first stage, Equation (6) regresses consumption growth on lagged inflation over a backward-
looking window using all data available up to month ¢ (estimated using weighted least squares
with weights identical to Equation (2)). Hence, the window s runs from 1 to ¢t — K. In the
second stage, Equation (5) uses the estimated coefficients and inflation observed at time ¢, i.e.,
cgf\l + lgi\ll_[t, to predict consumption growth from month ¢ + 1 to t + K. This setup ensures
that we use no forward-looking information when we predict consumption growth in the second
stage.

If this structure correctly models the conditional expectation of consumption growth, we
should find that di™ = 0 and di™ = 1. Panel B of Table 2 presents the results. To test
significance, we report asymptotic Newey-West t-statistics (with K lags) as well as t-statistics
from a bootstrap experiment that addresses the concern that our estimates are biased due
to errors-in-variables (EIV). The bootstrapped standard errors are derived from 500 block-
bootstrap replications of the coefficient estimates as explained in Section A of the Internet
Appendix.

First, df’K is significantly larger than zero at all horizons, based on both asymptotic and

3In the data, we lag inflation by an additional month, to account for the reporting delay of CPI numbers.



bootstrap inference. In fact, for no horizon K can we reject the hypothesis that dS’K =0
nor that df’K = 1, which suggests that this structure succeeds in modelling the conditional
expectation of consumption growth. This conclusion is supported by the R?, which increases
from 3% at the one month horizon to an economically large 15% at the one year horizon.
We also calculate an out-of-sample R? (R2 — OOS) to ensure that the predictive performance
does not come from the constant term aX | alone, which measures lagged average consumption
growth, but also from the nominal-real covariance, bX ;. The R2—0O0S is estimated as is usual

in predictive regressions in the literature (see, e.g., Goyal and Welch (2008)):

Var(ACu ek — (affy +b411,))

R2-008 =1 o
VCLT(AOt+1;t+K - atLl)

(7)

Here, a;f’fi is estimated in a backward-looking window regression of consumption growth on a
constant following Equation 6, but leaving out lagged inflation. We find that the R2 — OOS is
similarly increasing from 2% at the one month horizon to 10% at the one year horizon. These
results imply that inflation is a potent predictor of consumption growth once accounting for a
time-varying nominal-real covariance.

Going forward, our main proxy for the nominal-real covariance is the time-varying relation
between inflation and future twelve-month consumption growth (NRCE). In a number of
robustness checks, we consider two alternative proxies of the nominal-real covariance, namely
the time-varying relation between inflation and industrial production growth (NRC!F) and
the negative of the stock market beta of a long-term treasury bond (NRC;"?). NRCI?
is estimated by substituting industrial production for consumption on the left-hand side of
Equation (11). Following Campbell et al. (2014), NRC,; 5 is estimated with a 60-month
rolling window regression of the 10-year constant maturity treasury bond return on the CRSP
value weighted stock market return. Figure 1 plots these three estimates of the nominal-real
covariance and shows strong comovement at low frequencies: the Hodrick-Prescott filtered

trends of these series share a correlation larger than 0.70. Consistent with Campbell et al.
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(2014), NRC; 25 has changed sign from negative to positive in the early 2000s. In fact, all
three measures have increased markedly since the turn of the century, as noted also in Bekaert

and Wang (2010), Campbell et al. (2013), and David and Veronesi (2014).

2 The Inflation Risk Premium

Our main objective is to analyze the inflation risk premium in the stock market. We use three
standard approaches to measure the inflation risk premium. The first estimate of the inflation
risk premium is the High-minus-Low inflation beta decile spreading portfolio (denoted HLIP).

The second estimate of the inflation risk premium is the maximum correlation inflation-
mimicking portfolio (denoted MCIP) of Breeden et al. (1989). We estimate this portfolio by

projecting inflation innovations on the space of ten inflation beta-sorted portfolio returns:
ur 1 = intercept + weights’ X Ryq + €41, (8)

where Riy1 = (Ruight+1s -, Riowt+1). Then, MCIP is the portfolio return weights’ x Ryyq.
We use the ten inflation beta-sorted portfolios as they should contain a large share of the
information in w41 that is relevant for the cross-section of stock returns. Table IA.1 of the
Internet Appendix presents the weights. We see that the Wald-test of the hypothesis that the
weights are jointly equal to zero rejects at the 0.1%-level and the R? is equal to 5.35%. These
results suggests that these portfolios likely contain a large chunk of all inflation information
relevant for the cross-section of stock returns (see, e.g., Vassalou (2003) and Petkova (2006))
for similar arguments concerning non-traded factors and their mimicking portfolio).

Finally, we run a cross-sectional regression of monthly individual stock returns on lagged

inflation betas, where we control for market cap, book-to-market, and momentum following

11



previous literature (see, e.g., Fama and French (2008) and Chordia et al. (2015)):

Rip1 = log + lusPrie + 124 Zns + sy, with Zy = {MV;, BM;, MOM,}. 9)

The time-series of coefficient estimates [ represent the third estimate of the inflation risk
premium in the cross section of stocks, denoted CSIP. As shown in Fama (1976), CSIP captures

the return of a zero-investment portfolio with pre-ranking inflation beta exactly equal to one.

2.1 The Inflation Risk Premium in Subsamples

Table 3 describes the set of ten inflation beta-sorted portfolios, as well as the three estimates of
the inflation risk premium: HLIP, MCIP and CSIP. Panel A first reports the ex-post inflation
exposures of these portfolios. The exposures are estimated with a simple regression of portfolio
returns on inflation innovations over the full sample. Analyzing whether these exposures are
large, economically and statistically, is important to test whether inflation is a useless factor
in the sense of Kan and Zhang (1999) and also as a reality check of the estimation procedure.
The ex post exposures line up almost monotonically from High to Low and the dispersion
is wide, giving a post-ranking beta of 3.0 for HLIP. This ex post exposure is significant and
economically large, translating to an incremental monthly return of 76 basis points on average
when wup, increases by one standard deviation. For comparison, the CRSP value-weighted
market portfolio, with an inflation beta of -1.96, loses 49 basis points for the same increase
in urr;. MCIP and CSIP are scaled so that they have identical ex post inflation exposure to
HLIP.*

The remaining rows in Panel A report consistent evidence when we estimate inflation ex-
posures over an expanding window - by applying Equation (1) to the post-ranking returns of

the portfolios - and calculate the average and standard deviation of these post-ranking rolling

4For both MCIP and CSIP, the scaling factor is 3.00 divided by the post-ranking inflation beta of the
respective portfolio.
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inflation betas. It is important to note from the standard deviations that these rolling inflation
betas are subject to substantial time-variation, which we will address in more detail below.

Panel B and C present our estimates of the inflation risk premium over, respectively, the full
sample and in two subsamples pre- versus post-2002. This split is motivated by the fact that the
nominal-real covariance (as proxied by the relation between inflation and future twelve-month
consumption growth) increased above its historical mean during 2002, without falling below its
mean again until the end of the sample. Here, we consider average return, Sharpe ratio, and
CAPM alpha. In the following, we will control also for a larger set of traded benchmark asset
pricing factors.

The average returns for the ten decile portfolios are decreasing in inflation beta over the
full sample from 9.49% for Low to 5.26% for High. This dispersion translates to a marginally
significant annualized average excess return for HLIP equal to -4.23% (t = —2.08) or -4.21%
(t = —1.83) in CAPM alpha. The evidence is similar in magnitude and significance for MCIP
and CSIP. These estimates translate to a price of inflation risk as measured by Sharpe ratio
equal to -0.30, -0.44 and -0.32, respectively, which is comparable in magnitude to the Sharpe
ratio of the market portfolio. A negative unconditional inflation risk premium is consistent with
an unconditionally negative relation between inflation and future consumption growth over our
sample (Piazzesi and Schneider (2006)). Indeed, if a shock to inflation is bad news for investors
on average, they should pay high prices (and accept low returns) for high inflation beta stocks
(net of their market beta). Previous estimates of the unconditional inflation risk premium in
the literature are also negative and roughly in the same order of magnitude using a small set
of stock portfolios (Chen et al. (1986) and Ferson and Harvey (1991)), nominal and real bonds
(e.g., Buraschi and Jiltsov (2005), Gurkaynak et al. (2010), Ang et al. (2008), and D’Amico et
al. (2008)), and individual stocks Ang et al. (2012).

Looking at the subsamples, we see that this negative inflation risk premium is completely
driven by the sample period pre-2002, where average returns are almost monotonically decreas-

ing from 9.33% for Low to 1.84% for High. The difference between these average returns is

13



economically and statistically large at -7.49% (¢t = —3.01) for HLIP, which is significant even
using the data-mining corrected t-statistic cutoff of three proposed in Harvey et al. (2015). In
all three cases (HLIP, MCIP, and CSIP), returns in this subsample translate to a price of risk
below -0.50 in Sharpe ratio, which is economically large. Comparing the subsample post-2002
with these estimates, we see that the post-minus-pre-2002 difference is decreasing monotoni-
cally in inflation beta, translating to a large increase in the inflation risk premium as measured
by HLIP of 12.92% (t = 2.58). We see economically large and marginally significant increases
also for MCIP and CSIP as well as in CAPM alphas. In fact, because of this large increase in
the inflation risk premium, we cannot reject the null that the inflation risk premium is zero in
the subsample post-2002. Table TA.2 of the Internet Appendix shows qualitatively and quan-
titatively similar effects when we split the sample in months where NRCY is above and below
its mean.

In all, this subsample evidence suggests that there is important time variation in the inflation
risk premium that may be linked to the time-variation, and, in particular, the recent reversal,
in the covariance between inflation and the real economy (Bekaert and Wang (2010), Campbell
et al. (2013), and David and Veronesi (2014)). Campbell et al. (2013) find that inflation risk
premiums in bonds as well as the correlations between stocks and bonds vary over time, and
argue that this variation is driven by the nominal-real covariance. As such, the inflation risk
premium in the stock market should also depend on whether inflation signals bad or good news
for the economy. To address this time-variation, we now estimate the inflation risk premium

conditional on the nominal-real covariance.

2.2 Time-Variation in the Inflation Risk Premium

We report in Table 4 coefficient estimates from regressions of the inflation risk premium on
the nominal-real covariance between inflation and future twelve-month consumption growth,

denoted NRCE. To be precise, we regress excess returns on inflation portfolios (compounded
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over horizons H of one, three, and twelve months) on NRCC using:
Ry iie4m = Lo+ LNRCNRQ;C + €t44H- (10)

To ensure that we are not using any forward-looking information in these predictive regressions,

NRCF is the slope coefficient b}?; in the regression of Equation (6):
AC’s—&-l:s—i—l2 = agzl + biglns + €s+1:5+12, S = 17 7t - 127 (11)

For each horizon, Panel A presents the estimated coefficients (annualized), asymptotic
Newey-West t-statistics (with H lags), bootstrapped t-statistics using standard errors that
are derived from 500 block-bootstrapped coefficient estimates (see Appendix A of the Internet
Appendix), and the adjusted R?’s for the individual decile portfolios and the three inflation
portfolios of interest (p = {HLIP, MCIP,CSIP}). NRCE is standardized to have mean equal
to zero and standard deviation equal to one. Thus, Ly measures the average excess return of the
respective portfolio for H = 1. Consistent with the evidence above, we see that the estimated
intercepts, Lo, of about -4% for HLIP, MCIP, and CSIP, are marginally significant also using
bootstrap inference.

The main coefficient of interest, Lygrc, measures the increase in annualized portfolio return
for a one standard deviation increase in the nominal-real covariance. We see that Lygc is
decreasing monotonically from High to Low inflation beta. As a result, the effect of NRCE on
the inflation risk premium is positive and large, economically and statistically (based on both
asymptotic and bootstrap inference). For a one standard deviation decrease in the nominal-real
covariance, the inflation risk premium as estimated using HLIP, MCIP, and CSIP decreases by
about 3% to 4% for H = 1, which represents roughly a doubling of the portfolio’s expected
return and thus the price of inflation risk. The effect is slightly larger for longer horizons,

growing to about 4% to 5% for H = 12. The R? demonstrates an even stronger horizon effect,
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increasing from around 0.5% for H = 1 to over 6.5% for H = 12. We conclude that the inflation
risk premium varies conditional on the nominal-real covariance.

In Panel B, we analyze whether our results extend for two alternative measures of the
nominal-real covariance, namely the time-varying relation between inflation and industrial pro-
duction growth (NRCIT) and the negative of the stock market beta of a long-term treasury
bond (NRC;BB). In short, our evidence is qualitatively and quantitatively robust. We find
that each alternative measure predicts the inflation risk premium (as measured by HLIP, MCIP,
and CSIP) with a positive coefficient that is comparable in magnitude, significance, and hori-
zon pattern to what we have seen before. Panel C shows that the predictive relation between
the inflation risk premium and the nominal-real covariance is robust over time and exists in
both sample halves. Although the effect is stronger in the second half of the sample, it follows
from this finding that the time-variation in the inflation risk premium is not only a recent
phenomenon (see Figure 1).

We conclude that the inflation risk premium is strongly time-varying with the nominal-
real covariance. This time-variation is driven mostly by time-variation in the price of inflation
risk. To see why, consider the cross-sectional regression portfolio, CSIP, which has ex ante
inflation beta fixed at one and for which results are comparable to the two alternatives, HLIP
and MCIP. Hence, any variation in the returns of CSIP must follow from the price of inflation
risk. The economic intuition for our result is that high inflation beta stocks are attractive to
hedge consumption risk when inflation predicts consumption with a (large) negative sign as it
did historically. However, these same stocks are not attractive as a hedge anymore, and may
even expose investors to additional consumption risk once the nominal-real covariance between
inflation and consumption starts increasing, as it does towards the end of our sample. As a
result, expected returns should be increasing in the nominal-real covariance, which is what we

find. In the following section, we formalize this intuition in a model.
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2.3 Time-Variation in Inflation Betas

Given the impact of the nominal-real covariance on the inflation risk premium (the price of
risk), a natural question is to ask whether the nominal-real covariance impacts inflation betas
(the quantity of risk). To set the stage, Figure 2 depicts the histogram of inflation betas for four
different time periods. We have selected December of 1971, 1983, 1994, and 2009 to portray
the shape of the distribution of betas in different macroeconomic conditions and inflationary
regimes. Inflation betas have significant dispersion in all four time periods, suggesting that
there is a wide spectrum of ex ante inflation betas among individual stocks.

Although some of this dispersion is certainly due to noise, we note that these ex ante inflation
betas translate to a large and persistent spread in ex post inflation beta. To see why, Figure 3
plots the monthly post-ranking inflation beta one month, one year, two years, five years, and ten
years after the sorting date. To calculate these inflation betas, we fix the portfolio composition
at the sorting date ¢ and calculate monthly value-weighted returns up to ten years after the
sorting date. When a stock leaves the sample, we reallocate its market value across all remaining
stocks. We then run a regression of monthly returns in t+1, t+12, t + 24, t+60, and £t 4120 on
contemporaneous (with the returns) innovations in inflation. In this way, we mimic the monthly
inflation exposure for an investor that rebalances infrequently with respect to inflation beta.
In short, our sort is powerful: post-ranking inflation beta is almost monotonically decreasing
in pre-ranking beta up to ten years after the sort, translating to a post-ranking beta for the
high-minus-low spreading portfolio that falls from 3.00 one month-after sorting (as reported in
Table 3) to a still large and significant 1.68 ten years after sorting.’

It is important to note that such wide cross-sectional dispersion in ex ante and ex post
inflation betas is instrumental in identifying the inflation risk premium analyzed in the previous

subsection. Figure 2 further shows that the mean of the inflation beta distribution moves

This finding is seemingly inconsistent with the conclusion in Ang et al. (2012) that inflation betas are hard
to estimate out-of-sample. However, their conclusion is based on a smaller sample of S&P500 stocks from 1990
to 2009. In the Appendix to their paper, the authors report results that are consistent with ours for a sort using
all stocks in the CRSP universe from 1967 to 2009.

17



considerably through time. This finding is consistent with the intuition that a time-varying
nominal-real covariance should affect the inflation beta of the aggregate stock market. Indeed,
when the nominal-real covariance is negative (positive), a shock to inflation is bad (good) news
and should be accompanied by low (high) aggregate stock returns. To formalize this intuition,
Table 5 analyzes how inflation betas of our inflation portfolios vary over time and in the cross-
section with the nominal-real covariance. To this end, we regress the rolling inflation beta of
the ten decile portfolios (estimated by applying Equation (1) to the post-ranking returns of the

portfolios) on the nominal-real covariance:

Bript = Bro + Bonre NRCE + &, (12)

As before, NRCC is standardized to mean equal to zero and standard deviation equal to
one, such that 5, is equal to the average rolling inflation beta of the respective portfolio (as
reported in Table 3). Analogous to Table 4, the table reports the estimated coefficients, with
corresponding t-statistics based on Newey-West standard errors with 60 lags, and the R? from
each regression.

In short, we confirm that inflation betas are increasing in the nominal-real covariance. For
all decile portfolios, the effect is marginally significant and economically large, with an increase
in inflation beta of 1.55 on average for a one standard deviation increase in NRCE. Although
the effect is not completely monotonic, we find that 8, nre is larger for stocks with relatively
low inflation betas. An increase of 1.55 is about half of the post-ranking inflation beta of HLIP
reported in Table 3. Given the unconditional price of inflation risk of -4.2% for HLIP, this
increase thus represents a decrease in the average inflation risk premium in the stock market
by about -2.2%, which is economically large. The model we present next, will allow for such

time-variation in inflation beta and inflation risk premiums.
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3 Model

We present a model that takes as given the key empirical interconnections among inflation,
consumption, and the nominal-real covariance uncovered in the last section and then reproduces
- via pricing through the Euler equation of a representative agent - an equilibrium inflation
risk premium that behaves like the one we empirically estimate. The model builds on the
mathematics and economic intuition of the long-run risk model of Bansal and Yaron (2004),
but the economic sources of risk are different, since our focus is on the asset pricing implications

of inflation risk.

3.1 Preferences

The representative agent has preferences given by the recursive utility function of Epstein and

Zin (1989) and Kreps and Porteus (1978),

_ 1-1/% ﬁ
Uy (W) = ((1 —9) c} Vv 4 5E, [UtH(WtH)l_ﬂ =y > , (13)

where W, is real aggregate wealth and C} is real aggregate consumption. The constant 6 € (0, 1)

is the discount rate, v > 0 is the coefficient of relative risk aversion and 1 > 0 is the elasticity

of intertemporal substitution (EIS). It is convenient to define the constant § = 1:7 7> which
measures the magnitude of risk aversion relative to the EIS. The first order condition for the
representative agent’s problem implies that the gross return® R;;.; on any tradable asset i
satisfies the Euler equation

1=FL [Mt+1Rz',t+1] ) (14)

®Note that in the empirical analysis R; ;41 refers to excess returns.
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with a stochastic discount factor given by
0
10g Mt+1 = Mty1 = 910g5 — EAC]H_I + (9 — 1) Tet4+1, (15)

where lowercase letters denote logarithms, so that Ac; = InCy — InCy_; and 7. = log (R.+).

3.2 Dynamics of the economy

The processes for real consumption growth, Ac;, inflation, 7y, the nominal-real covariance, ¢y,

and real dividend growth for asset ¢, Ad;,, are exogenous and given by

Tes1 = fr + Pr (T — fr) + Prlizsr + Erte, (16)
Acpi1 = e+ pe (Te — pr) + 0cnie1 + Qrtie1 + Ecpr1y, (17)
Pri1 = o — U (Pt — Po) + Twit, (18)
Ad; i1 = pi + pi (T — f) + i1 + Giprtiesr + Eipr_1us. (19)

The shocks uy, n; and wy are i.i.d. standard normal. Equation (16) shows that, as in our empir-
ical analysis, inflation follows an ARM A (1,1) process. The constant p, is the unconditional
mean of 7, pr is its AR (1) coefficient and ¢, &, control its M A (1) component. Estimating
this univariate process to extract the path for u;, as we did in the previous section and as we
do in our calibration section below, gives positive values for p, and ¢,, and a negative one for
&r

The process for Ac¢;1; in Equation (17) has several features. The term p,. is the uncon-
ditional mean of Ac;yy. The innovation 7, represents a shock to the real economy that is
orthogonal to inflation and nominal-real covariance shocks, with homoskedastic impact on con-
sumption growth controlled by o.. The rest of the terms in Equation (17) capture the effect

that inflation and inflation shocks have on the real economy. These inflation non-neutralities
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have two components, an unpredictable and a predictable one. The unpredictable component
is given by ¢;us11, where the nominal-real covariance ; follows the mean-reverting process
given by Equation (18). As is the case in many similar models, a stochastic ¢; implies that
consumption growth has stochastic volatility. However, unlike standard stochastic volatility
models, ¢; can change signs, so the conditional covariance between inflation and consumption

growth,

COVy (ACtH, 7Tt+1) = Onpt,

can also change signs (the conditional variance of Acyyq is guaranteed to always remain pos-
itive though). The predictable component of inflation non-neutralities in Equation (17) is
Pe (T — pir) + Eepr—1ug. All predictability of Acyyq comes from this component. Unconditional
predictability - which empirically is found to be negative - can be seen from running, in the
model, a regression of Ac; ; on m; analogous to the empirical one we run in Panel A of Table

2. The coefficient on 7; in this regression is

Cov (Acpp, ™) (1= p2) Edripo
= qkpPc + 2 2
Var (7Tt) ¢7‘r + €7r

(20)

where ¢y, is a constant that depends on the parameters of the inflation process (pr, ¢r, &) and
is decreasing in the predictive horizon k.

The process for consumption also implies conditional predictability of consumption growth
with inflation that is different from the unconditional predictability just examined. The con-
ditional predictability captures three key features of the relation between inflation and con-
sumption discussed in the previous section. First, higher inflation can predict higher or lower
future consumption growth depending on the time period examined. Second, the sign and
magnitude of this conditional predictability are persistent over time. Third, at each period in
time, predicting future consumption growth over horizons ranging from one to twelve months

gives almost identical results. To see that these three features are indeed present in our setup,
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we run in the model a two-step predictive procedure analogous to the one in Panel B of Table
2. In the first step, we run a conditional regression of cumulative consumption growth over the
next k = 1,2, ..., 12 months on inflation at time ¢. The model-implied coefficient on inflation in

such a regression is

COUt_l (Z?:l Act+j7 7Tt> €c
= hk + — 4, (21)

Var,_ 1 (m) O

where hy is a constant that depends on the prediction horizon k. Equation (21) shows that

o) =

Qt(k) can change signs and is persistent because ¢, has these exact properties. In addition, for
reasonable parameters (such as the ones we use in the next section, e.g., p. < 0), hy decreases
with k, producing coefficients Hgk) that are roughly constant in k& for the £’s we consider. This
first-step regression makes clear why we call ¢; the nominal-real covariance: Under the null
of the model, ¢; is a linear transformation of ng), the same object we use to measure the
nominal-real covariance in the data.

In the second step of the predictive procedure, we run an unconditional regression of cumu-
lative consumption growth on its value predicted from the first step regression. In the model,
the coefficient of this second-step regression is equal to one and the intercept is equal to zero.
This result is consistent with the failure to reject the hypothesis that df is not equal to one and
dg is not equal to zero in Table 2.

The dynamics of real dividend growth for asset i is given by Equation (19). We model
dividends as levered consumption, whereby dividends are subject to the same risks as con-
sumption but with potentially different exposures. In the present context, asset ¢ represents
one of the inflation-sorted portfolios from the last section. To derive the model-implied infla-
tion risk premium from the cross-section of stock returns, it is enough to consider two assets,
1 = H, L. When we calibrate the model, these two assets will be mapped to the highest and

lowest inflation beta portfolios that we constructed in the last section.
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3.3 Wealth-consumption ratio

In equilibrium, the log wealth-consumption ratio is linear-quadratic in the state variables m,
o and wuy:

wey = Ao+ A1y + Asprruy + Asug + Ag (1 — @0)2 , (22)

where @y is a constant close to ¢y given in the Appendix.” The loadings on the state variables

are

1

(1 ) T (23)
1——&, (24)
E1 % F1npe (25)

1 —rips’
h ] ((6- )+9A2,ﬁ)2 -

T2 1— K02 (op+1)

with k1 € (0,1) a linearization constant.

The intuition behind A;, Ay and As is identical to that of the standard long-run risk
model. When the EIS is greater than one, the intertemporal substitution effect dominates the
wealth effect. In this case, which we henceforth assume, higher expected consumption growth
Ey[Acii1] leads the representative agent to invest more, increasing the wealth-consumption
ratio. It follows that any state variable that increases (decreases) expected consumption growth
has a positive (negative) loading in Equation (22). If p. < 0, which is the relevant empirical
case, higher 7; is bad news for expected consumption growth and hence A; < 0. The higher the
persistence of inflation, p, , and the higher the EIS, the stronger is the impact of m; on we; (A4

is more negative). Similarly, £, qu, is also part of expected consumption growth, which gives

It is not necessary to introduce this constant, but it substantially simplifies the framework. Indeed, having
¢¢ and @7 as two separate state variables instead of the single (¢; — @0)2 gives the same results by completing
the square without the need for @q.
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rise to the expression in As. As u, is i.i.d., there is no multiplier akin to the (1 — /ﬁpw)_l for A;.
Even though A, is constant, because of the time-varying nominal-real covariance, a positive
inflation shock u; is sometimes good news and sometimes bad news for expected consumption
and valuation ratios, which is captured by the cross-term ¢, ju; in Equation (22). In our
calibration, we find evidence that &. > 0, which implies Ay > 0. A positive inflation shock is
then a good state of nature when the nominal-real covariance is positive and a bad state of
nature otherwise.

The loading Az appears in Equation (22) because the shock u; influences expected con-
sumption growth indirectly through inflation: w; affects ;.1 which, in turn, affects tomorrow’s
expected consumption growth E;,1 [Ac;io]. Because inflation is persistent, not only is tomor-
row’s expected consumption growth changed through this channel, but also the whole of its
future path. The impact of u; on inflation today is regulated by &, while the impact of 7,1 on
wcyyq arising from all changes in future expected consumption is Ay, as in our earlier dicussion.
The product of these two values, discounted by k; to bring the effect on wc;,; back to time t,
produces As.

The loading A4 can be understood by recognizing that one of the roles of the nominal-real
covariance is that of stochastic volatility of consumption. The particular expression for Ay is
close to the familiar one in the long-run risk literature, yet not identical. The differences arise
because we model the volatility ¢; as an AR (1) instead of the variance p? and because we
have stochastic volatility in the moving average component in the consumption process (17)
instead of in Bansal and Yaron’s long-run risk process - which is absent in our model. On the
other hand, the moving average component matters for A4 for the same reason that stochastic
volatility of long-run risk matters for consumption: higher stochastic volatility for Ac;.; today
also means a more volatile expected consumption growth at ¢ + 1 from the point of view of
time t. Thus, despite the differences with the benchmark long-run risk model, the sign of the
stochastic volatility loading A, is still determined by the sign of 6, so that if the EIS v and the

CRRA coefficient v are both greater than one, higher uncertainty is detrimental for asset prices
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and leads to a lower wealth-consumption ratio. The fact that the nominal-real covariance can

change signs is unimportant for this channel.

3.4 Stochastic Discount Factor and Prices of Risk

Armed with the wealth-consumption ratio equation and its loadings, we can now examine the

prices of risk in the economy. The innovation in the stochastic discount factor is given by

M1 — By [mt—i-l] = =AUyl — A W1 — )\2wwt2+1 - >‘n77t+1 (27)
where the the prices of risk are

At = K1 (1= 0) (Az + ¢x A1) + [(1 = 0) k1 Ao + 7] @ (28)
At = —2k10y (1 = 0) Agv (¢ — o) (29)
Mow = K102 (1 —0) Ay (30)

(31)

Ay = 0cY

The price of inflation risk, A, ;, is a linear function of the nominal-real covariance ¢;, and so can
change signs over time. In equilibrium, investors sometimes require compensation for bearing
inflation risk because inflation shocks are a harbinger of poor future consumption growth.
Other times, investors are willing to accept lower returns in order to hold inflation risk because
it is a good hedge against bad macroeconomic outcomes. In addition to ¢;, the magnitude
and standard deviation of \,; are determined by preference parameters and the relationship
between consumption growth, inflation and inflation shocks. The sign and magnitude of the
unconditional mean of A,; depend on how strongly and in what direction inflation predicts
expected consumption growth in an unconditional way. A negative mean for A, ; reflects that,

unconditionally, higher inflation is bad news for consumption growth and hence a bad state

25



of the economy. The higher the persistence and volatility of inflation, or the stronger the
negative predictability of consumption with inflation, the larger this effect. The same is true if
risk aversion or the EIS increase, as the representative agent becomes less tolerant of expected
consumption growth risk.

The time-varying part of )\, arises for two different reasons. First, because consumption
growth has a direct exposure to contemporaneous inflation shocks, inflation shocks are priced.
The last term in Equation (28), ¢, , captures the compensation for this type of risk. This term
would be present even in the case of power utility, when the consumption-CAPM holds, as it
represents short-term consumption volatility risk. In the case of power utility, however, none
of the other terms of \,; would be present and the standard deviation of \,; would be much
smaller than the one we estimate empirically unless risk aversion is set to be unreasonably high
— another manifestation of the equity premium puzzle. The second reason for the presence of
a time-varying term in A, ; is that today’s inflation shocks have a direct effect on tomorrow’s
expected consumption growth, a result of having the moving-average component of inflation
be also present in the process for consumption growth. The size of the time-varying term, and
hence of the volatility of A, ., is determined by the volatility of ¢, the risk aversion and EIS
of the representative agent and the degree to which lagged inflation shocks move consumption
growth.

The price of nominal-real covariance risk is given by A, and Ag,. The Ay, component
reflects compensation for pure stochastic volatility risk in consumption growth. This price of
risk is analogous to the standard price of stochastic volatility risk in the baseline long-run risk
model. It is the risk that the volatility of consumption will change in a persistent way, either
upwards or downwards. It is constant because the volatility-of-volatility o,, is constant and
because it does not capture the risks from sign changes in the nominal-real covariance, which
are instead priced by A, ;. For example, the compensation for bearing the risk that, sometime
in the future, a positive inflation shock will change from being a good shock for the economy to

a bad one is included in A, ;. Compared to A, ;, which prices inflation risk for a given value of
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©t, Ay Prices the risk of ¢; changing over time. Lastly, A, is the price of short-run consumption

risk brought about by standard consumption CAPM logic.

3.5 Inflation-sorted Portfolios

Because dividends are exposed to the same risks as consumption, the equilibrium log price-

dividend ratio for portfolio ¢ has the same form as the log wealth-consumption ratio:
pdiy = Do; + Dyimy + Dajor—1uy + Dajuy + Dy (0r — @02‘)2 ) (32)

where, as before, @y; is a constant close to ¢y. The loadings relevant to the analysis of the

inflation risk premium in the cross-section of stocks are

Dy = (& _ l) _ P (33)

pe ) 1—prki;’
& 1)
Dy =|=—— &, 34
? (& " (34)
Pi 1) K1,iExPe
Dy = (P2 -~ ) FisePe 35
’ (pc ¢ 1- Prkii ( )

and we give Dy;, the loading on the nominal-real covariance, in the Appendix. The intuition
behind these loadings is similar to that of the wealth-consumption loadings. The only difference
is that they depend on how inflation and inflation shocks affect dividend growth not in abso-
lute terms but relative to how they affect consumption growth, since the representative agent
evaluates stocks not by their outright exposures but by their ability to hedge consumption risk.
For example, in Equation (33), it is not the absolute exposure p; of expected dividend growth
to inflation that matters, but its magnitude relative to the exposure of consumption, p..
Furthermore, portfolio i is exposed to unexpected dividend growth risk, which does not
influence the price-dividend ratio (as unexpected dividends have a one-to-one effect on the

price) but does contribute to the overall risk of the portfolio. This risk — together with the
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expected dividend growth risk — is nevertheless manifested in returns space. The equilibrium

risk premium for portfolio ¢ implied by its Euler equation is

— Covy (M1, Ti41) = At Bui + AwtBuwi + A2wBowi + An i (36)

where the (; are portfolio-specific quantities of risk given by the correlation between a portfolio’s

return and the corresponding sources of risk. For our analysis, the most important is

Pc

(pi — J) (Or + Enknyi) K1y £,
Bu,it = 1= porns + (Cbi + (fi — E) Hl,i) o (37)

The term ¢;(p; is the quantity of unexpected dividend growth risk that, as explained, adds to
the riskiness of portfolio ¢ but does not move its price-dividend ratio. It arises because dividend
growth is directly exposed to inflation shocks through ¢;p;u; 1. The nominal-real covariance
determines whether wu;,; shocks are good or bad states of nature, and hence also whether the
quantity of risk ¢;¢; is positive or negative. The other terms in 3, are all related to the
quantity of expected dividend growth risk. The first term in Equation (37) is the part that
arises from inflation entering expected dividend growth through the term p;m; in Equation (19).
This risk operates through inflation shocks moving inflation and inflation subsequently altering
expected dividend growth, so it is unrelated to the nominal-real covariance. On the other hand,
the term(&; — &./v) K1+ gives the amount of u-risk generated by expected dividend growth’s
direct exposure to the moving-average component in inflation shocks through the term &;¢; 1 u;
in Equation (19). A positive surprise in u; can lead to increases or decreases in the quantity of

portfolio ¢’s risk depending on the sign of y;_;.
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4 Calibration

We calibrate the model in two steps. First, we estimate parameters for inflation and consump-
tion in Equations (16) and (17) using only inflation and consumption data. The estimation
by construction matches the persistence of inflation and the unconditional and conditional
properties of the predictability of consumption with inflation. The exact procedure is in the
Appendix.

In the second step, taking the parameters from the first step as given, we calibrate param-
eters for preferences, the nominal-real covariance in Equation (18) and the dividend growth
processes for inflation portfolios in Equation (19). We calibrate dividends for two portfolios
1 = H, L that map to the highest and lowest inflation beta portfolios constructed in the last
section. The first target in this second step of calibration is the volatility of consumption
growth, which depends on consumption parameters already determined in the first calibration
step, but also on all parameters of the nominal-real covariance. The low observed volatility of
consumption growth places tight restrictions on the volatility of the nominal-real covariance.
The second set of targets for our calibration are the first and second moments of returns and
inflation betas for the portfolios. Matching the returns of portfolios H and L ensures that the
size of the inflation risk premium is consistent with the data. Matching the first moment of
betas then gives the appropriate mean quantity of inflation risk. Together, betas and returns
that match their empirical counterparts automatically give a model-implied price of risk that
is consistent with the data. To capture the correlation between the H and L portfolios, we also
target the standard deviation of returns and inflation beta for the HLIP portfolio. Finally, we
focus on the coefficient Lygrc mrrp of a predictive regression of HLIP returns on lagged nom-
inal real covariance analogous to the one in Equation (10) to test one of the key equilibrium
results of our model, the connection between the exogenous nominal-real covariance and the

endogenous returns.
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4.1 Results

Table 6 shows the calibrated parameters and Table 7 gives the resulting moments and their
data equivalents. The parameters for inflation imply that it is persistent over business cycle
frequencies but not in the longer run, with inflation shocks dissipating almost completely after
three years. Expected consumption growth is negatively exposed to inflation, with a one per-
centage point increase in inflation resulting in a 12.6 basis-point decline in consumption growth
next month (plus further declines in subsequent periods due to inflation’s persistence). The
contemporaneous correlation between consumption and inflation is small and not a significant
driver of our results, neither in the data, nor the model.

For preferences, we use ¢ = 2 and v = 14.5, which are within the range of values used in
the literature.®

Table 7 shows that the model can match means and standard deviations of returns and
betas for the H and L portfolios. For the HLIP, the model generates a volatility of returns and
betas lower than the H and L portfolios, as in the data. The spreads in mean returns and betas
between the H and L portfolios are driven mainly by the differences in their p; and ;. For
both portfolios, expected dividend growth is negatively exposed to inflation through p; < 0 just
as consumption growth, although both portfolios are much more exposed than consumption;
the low beta portfolio’s exposure is more than one-for-one. On the other hand, the exposure
of expected dividend growth to inflation shocks, given by &;, is of opposite sign to £. for both
portfolios, which reduces the volatility of inflation betas and provides some hedging against
inflation shocks. The constant term in the price of inflation risk A, gives a Sharpe ratio of
—0.23, while its time-varying term implies an annualized volatility of 24%.

The last line of the table shows that the predictive regression coefficient Lygrc mrrp is in
line with the one found empirically in Table 4. To match this regression coefficient, it is key for

this predictability regression to have a volatile and persistent enough nominal-real covariance.

8For example, in a closely related model, Bansal and Shaliastovich (2013) use 1 = 1.81 and v = 20.9.
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In contrast, to match the low observed volatility of consumption growth, v and o, cannot
be too large. Matching both moments simultaneously gives quantitative credence to a pricing
mechanism operating through the consumption channel proposed in our model. The value of
v implies a half-life for ¢, of ten years, confirming the slow-moving nature of the nominal real
covariance and the visual intuition of Figure 1. The calibrated values of v and o, imply a
volatility of ¢; comparable to that of real consumption growth, at 1.5% in annualized terms.
Our calibrated parameters differentiate the risks we are considering from those in the long-
run risk literature despite the mathematical similarities in our models. The half-life of the
predictable component of inflation is one quarter, while it is around ten years in most long-run
risk calibrations. The half-life of the stochastic volatility of consumption growth in long-run
risk models is usually more than fifity years, compared with ten years for the nominal-real
covariance. On the other hand, the volatility of inflation is around a hundred times larger than
that of long-run risk, and the volatility of the nominal real covariance is an order of magnitude
larger than that of stochastic volatility. The lower persistences and higher volatilities of our
setup generate a market price of risk similar to the one for the higher persistence, lower volatility,

long-run risk model.

5 Industry Characterization and Robustness

In this section we analyze whether stock’s inflation exposures and inflation risk premiums

contain an industry component and describe a range of robustness checks.

5.1 Industry Composition of Inflation Portfolios

Having seen that inflation betas vary persistently and considerably over time and across stocks,
we move to an important determinant of a stock’s inflation beta: industry affiliation (see

also Boudoukh et al. (1994) and Ang et al. (2012)). To this end, we use Kenneth French’s
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classification into 48 industries. In each month of the sample and for each industry, we find
the stocks that have inflation beta above and below the cross-sectional median inflation beta
and calculate the fraction of the industry market capitalization allocated to each of these two
groups. To conserve space, we present in Table 8 the ten industries with on average the best
and worst inflation hedging capabilities. Our results are intuitive and in many ways consistent
with Ang et al. (2012). Among the best inflation hedgers are industries such as oil, gold,
utilities, and mining, for which industries over 64% of the market capitalization (on average)
has above median inflation beta. Among the worst inflation hedgers are industries such as banks,
insurance, clothes, and textiles, for which industries over 70% of the market capitalization (on
average) has below median inflation beta. This industry composition is quite stable over time.
Over half of the market capitalization of these same industries is allocated, respectively, to the
above and below median inflation beta groups in over 70% of the months in our sample. We
conclude that inflation betas contain an industry component. To address this evidence, we ask
in the following whether our evidence on the inflation risk premium is driven by within- or
across-industry variation, or both.

For the within-industry sort, we construct five market value-weighted stock portfolios within
each industry by splitting at the quintiles of ranked inflation betas of the stocks within that
industry. This gives us a total of 48-by-5 value-weighted portfolios. We then collapse the across-
industry dimension by calculating the industry inflation beta as the value-weighted average
inflation beta of all stocks in that industry and sorting the 48 industries into quintile portfolios.
This leaves us with a 5-by-5 within- and across-industry sort. We exclude industry-months that
contain fewer than ten stocks.

In Table 9, we replicate our main evidence on post-ranking betas and the inflation risk
premium. We first collapse the five-by-five within- and across-industry sort into five within-
industry portfolios and five across-industry portfolios. The within-industry portfolios are com-
puted by averaging over five across-industry portfolios for each within-industry quintile. The

across-industry portfolios are calculated as the equal-weighted average of the nine or ten in-
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dustries that belong to the relevant quintile of the across-industry sort. The aggregate within-
industry effect is presented in the sixth column and is the difference between the high and low
within-industry portfolio return. The across-industry effect is in the twelfth column and is the
difference between the high and low across-industry portfolio return.

In short, our main results extend in both dimensions. First, post-ranking beta is increasing
in inflation beta both within- and across-industry. Second, the unconditional inflation risk
premium is marginally negative both within- and across-industry at -1.71% (¢t = —1.38) and
-2.89% (t = —1.78), respectively. Third, the nominal-real covariance predicts the returns with
a positive and significant coefficient of 3.25% and 4.63%, respectively, at the twelve-month
horizon. In both cases, these three results follow from monotonic effects from high to low
inflation beta. In summary, this evidence suggest that although a sort on inflation beta in
the CRSP universe contains a strong industry component, our evidence on the inflation risk
premium is not solely driven by (across-) industry effects. Thus, variation in inflation beta
within industries, perhaps due to differences in corporate hedging practices, market power (see
also Weber (2016)), or the place of a firm in the supply chain, is priced in a manner consistent

with our hypothesis, even when the industry at large is not strongly exposed to inflation.

5.2 Robustness Checks

We next describe a range of robustness checks for our main results that we report in the Internet
Appendix.

5.2.1 Controlling for Benchmark Asset Pricing Factors

We perform two tests to analyze whether the inflation risk premium and its variation with the
nominal-real covariance are robust to controlling for the standard asset pricing factors of the
CAPM, Fama-French three-factor model (FF3M), the Fama-French-Carhart model (FFCM),
and the Fama-French five-factor model (FF5M).
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First, we control for ex ante exposure to the benchmark factors when estimating stock’s
inflation exposures using Equation (1). Table IA.3 reports the predictive regressions for our
inflation mimicking portfolios. We see that both the unconditional inflation risk premium as
measured by the intercept of the predictive regression as well as the coefficient on the nominal-
real covariance are consistent in magnitude and significance with what we have seen before.
We thus conclude that the inflation risk premium is robust to controlling for the benchmark
factors ex ante.

Second, we control for these benchmark factors ex post. It could be that the inflation risk
premium estimated in Section 2.2 is exposed to these factors, but due to measurement error or
correlation between the factors and inflation innovations this is not controlled for completely
when including these factors ex ante. To this end, we regress the inflation risk premium on
NRCE as in Table 4, but now controlling for contemporaneous exposure to these benchmark

factors following the approach of, e.g., Baker and Wurgler (2006):
Rpsirerm = Lo+ LnreNRCE 4 BpFrivii i + v (38)

where F;, 1., g contains a subset of the following factors:
(RvkTyirte4 s Rsvpasvert, Rusvpaviert, Riosasvar s, Reropsvar i, RiNvirtasn) -

The evidence reported in Table IA.4, shows qualitatively and quantitatively robust estimates
for Lygrc, which supports our previous conclusion that that the positive relation between the
inflation risk premium and lagged nominal-real covariance is not due to benchmark factor expo-
sure. The estimated unconditional inflation risk premium, Ly, falls in magnitude as benchmark
factors are added and, in fact, is not significantly different from zero when controlling for the
FFCM and FF5M. This finding is consistent with the idea that the factors (and their un-
derlying firm characteristics) are associated to unconditionally priced inflation risk. However,
this association is not strong enough to also capture the time-variation with the nominal-real

covariance.
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5.2.2 Controlling for Benchmark Predictors

Table TA.5 presents results controlling for alternative time-series predictors that previous liter-
ature finds to predict aggregate stock market returns or macroeconomic activity, or both. To
be precise, we run predictive regressions of inflation portfolio returns on lagged nominal-real
covariance, controlling for either the standard Intertemporal CAPM predictors: dividend yield
(DY), default spread (DS), and term spread (TS) (as used in Goyal and Welch (2008), Maio
and Santa-Clara (2012) and Boons (2016)) or the consumption-wealth ratio (CAY) from Lettau
and Ludvigson (2001a, 2001b).? Formally,

Ryiiraem = Lo + Lyre NROE + Cx X+ nerm, (39)

where X; = (DY;, DS;,TS;) or X, = CAY;, and all control variables are standardized just
like NRCE. In short, we see that our conclusions on the magnitude and significance of the
unconditional inflation risk premium, as measured by Lg, and the time-variation with NRCC,
as measured by Lygrc, are robust to the inclusion of these benchmark predictors. This finding
supports the conclusion that our evidence on the time-varying inflation risk premium represents

a new pattern in both the cross section and time series of equity risk premiums.

5.2.3 The Inflation Risk Premium within Size groups

In Table IA.6, we analyze the magnitude and time-variation of returns on High-minus-Low
inflation spreading portfolios within the three size groups: Micro, Small, and Big. For this
exercise, we consider both value- and equal-weighted portfolios. In Panel A, we see that the
unconditional inflation risk premium is negative in all size groups, although it is largest eco-
nomically for Big stocks. This result is especially clear for equal-weighted portfolios, where the

High-minus-Low spread is only -0.15 among Micro stocks, relative to -4.06 and -5.24 among

9We thank the authors for sharing the data on their website. Since our data is monthly, we use the quarter
t observation of CAY also to predict returns in the first two months of quarter ¢ + 1.
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Small and Big stocks. However, in all size groups, there is economically large and (marginally)
significant variation in the inflation risk premium over time, (i) when we split the sample in
a pre- and post-2002 period and (ii) when we regress inflation portfolio returns on the lagged
nominal-real covariance. From this evidence, we conclude that the unconditional inflation risk
premium is not present among the smallest of stocks. However, highlighting once more the
robustness of our main finding: the conditional variation in the inflation risk premium exists

among stocks of all sizes.

5.2.4 Alternative Measures of Inflation and Sorting Procedures

Finally, Table TA.7 of the Internet Appendix asks whether our results are robust to changing
the methodology in several dimensions as well as for inflation measures other than ARMA(1,1)-
innovations. To conserve space, we focus in these tests on the inflation risk premium measured
from High-minus-Low inflation spreading portfolios. First, following a suggestion by an anony-
mous referee, we estimate inflation betas by OLS using a standard 60-month rolling window
and perform a single sort, that is, without controlling for size. In this case, we see robust
evidence for a time-varying inflation risk premium from both the sample split around 2002 and
the predictive regressions, where the coefficient on the nominal-real covariance is similarly large
and significant as before. We note that the unconditional inflation risk premium is smaller in
magnitude, consistent with the size-effect documented in the previous subsection.

Second, we perform a two-way size-controlled sort exactly as described in Section 1, but now
we estimate stock’s exposures to (i) raw inflation; (ii) an AR(1) innovation in inflation; (iii) the
difference between inflation and the short-rate, which measure of inflation innovations is used
in Fama and Schwert (1977); and, (iv) real-time vintage CPI inflation, as in Ang et al. (2012).
The latter test represents a truly out-of-sample exercise, because here we also skip a month
after portfolio formation to take into account the reporting delay in inflation data. In all cases,

we find even stronger evidence than in Tables 3 and 4 (both economically and statistically) that
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the inflation risk premium is time-varying, and, in particular, with the nominal-real covariance.
The unconditional inflation risk premium is similar in magnitude and significance to what we
have seen above, except for the case of real-time vintage inflation where the estimate is negative,
but insignificant at -1.65%. We conclude that our estimates of the inflation risk premium and,

in particular, its variation over time are robust to alternative measures of inflation risk.

6 Conclusion

This paper provides new information about inflation risk in the economy by analyzing the
cross-section of stock returns. We find a substantial cross-sectional variation in inflation betas,
a sizable inflation risk premium, and a strong time-series variation in both inflation exposures
and risk premiums, that is driven by the variation in nominal-real covariance.

The unconditional price of inflation risk, a negative -4.2%, is consistent with the fact that
inflation predicts consumption with a negative sign historically. As a result, investors are willing
to hedge inflation by holding stocks with high inflation betas and hence accept their lower
returns. Recent literature finds that the nominal-real covariance is strongly time-varying, and
we are the first to show that betas and the inflation risk premium in the stock market are varying
over time in a consistent and economically important fashion. This risk premium is determined,
in sign and magnitude, by the nominal-real covariance such that a one standard deviation change
in the nominal-real covariance leads to a change in expected returns on inflation mimicking
portfolios by 4.5%. Looking at the cross-sectional distribution of the inflation exposures, we
find a spread in betas of around three among ten portfolios formed by sorting on inflation betas.
Moreover, the betas of those ten portfolios also vary considerably over time, i.e., a one standard
deviation change in the nominal-real covariance leads to a change in inflation beta of 1.55 on
average.

We develop an equilibrium model which builds on the empirical observation that inflation

today predicts real consumption growth in the future. Given that this predictive relation is
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determined by the time-varying nominal-real covariance, our model generates the dynamics of

the prices of inflation risk as well as the quantity of risk consistent with our empirical results.
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7 Model appendix

7.1 Model Solution

Conjecture that the log wealth-consumption ratio is
wep = Ag + Aimy + Aspr1uy + Azuy + Ay (@1 — 850)2 5 (40)

where

- V2K1 + V2Kk10y + 1 K1pe (Ox + K1&r)  (VPR1 + v2R10y — 1)
VK1 + VK10, + 1 70 (0c + K1&e) (K1pr — 1) (vK1 + vR10y + 1)
~ o when v,k ~ 1, 0, =0 and ¢.,&; or p. =0

A Campbell-Shiller approximation for the return on the aggregate wealth portfolio gives

Tei41 = Ko + K1we — wep + Acyq (41)
where
6E[wct]
R1 = m (42>
eE[th]

ko = log (eE[th] +1) — Elwe) (43)

eE[wct} + 1

are linearization constants and F[we,] is the unconditional mean of the log wealth-consumption

ratio. Using equations (17), (16), (18), (15), (40) and (41), the Euler equation for 7. ;41

1
0= By [Myy1 + Tepq] + Evart [Myy1 + 7Tt (44)
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gives

O0=r; + (QﬁlAlpﬂ —0A + (9 — %) pc> T
+ (0/?11415” - 9143) Ut

+ ((9 - %) §e — 9142) Pr—1Ut

2
+ (% (¢c <9 — %) =+ (9/11142) — A, + 0?0k Ay + U29H10w144> ¥ (45)

where

Tg = 0 (/ﬁ)o + Ind — AO — A4(,53 + (A[) + ,uﬂ-Al) /‘il)

+0 (vg (v +2) + Powo (Powo — 2 (v + 1)) + 207, ) k1A

0 1 0\>
(o-g)mrs(o-7) 7

0 -
#ors (Z5 (0nid + A+ 0w (140) 0 = 0

In order for equation (45) to be satisfied, the coefficients in front of the time-varying state

variables must vanish, yielding

1 Pe
A = _ )P
! (1 w) 0= rapr)

ao= () @
1 <¢c (e . g) + 9ﬁ1A2)2

A
! 20 v’k (0p+1)—1

The remaining constant Ay is determined by setting r§ = 0, which we solve numerically.
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For the inflation portfolios, we conjecture the log price-dividend ratio is

pd;s = Do; + Dyimy + Dojor1us + Dsjug + Dy (01 — 9501‘)2 ,

where ¢q; is a constant picked to ensure that the Euler equation has no terms linear in (.

We solve for the coefficients Dj; in the same way as for the coefficients A; but using the Euler

equation

1 1
0= By [myp1] + By [rig] + §VCL7’t (M) + §Va7’t [Tit1] + Covy [myg1, 75 041] (46)

for the return

where

Tit1 = Kio + Ki1pdity1 — pdiy + Ad; 11

eElpdi,i]
Rl = eBlpdid] 4 1 (47>
E[ d } eE[pdi,t}
Kio = log (6 pai,t —+ 1) — mE [pdz,t] (48)

The solution for Dy;, Dy; and Dj3; are given by equations (33), (34) and (35) in the paper, while

D,; satisfies the quadratic equation

1 /6 1 2

-5 <¢c (g o+ 1) 1Ay (60— 1)) (65 + i Dia)

1 1 2
+ (5@ + §/€i,1Di,2) — Ay (0—1)
—D; 4+ v2/€,~,1Di74 + 0202 K2 D?A + 0?1 Ay (0 — 1)

w'vi,1

+4U2I£§0'120A421 (0 - 1)2 + 2’02/{10'2)144 (0 - 1) ’fz',lDz',AL

47



for which we take the positive root as our solution. Finally, we solve for Dy; numerically by

setting the constant term in equation (46) to zero.

7.2 Estimation of Inflation and Consumption Growth Parameters

We choose parameters fir, pr, ¢n, & by fitting an ARM A(1,1) process, which corresponds
exactly to the specification in equation (??). Assuming {u;} is a white noise process, we use

inflation data to estimate the constants mg, m; and ms in equation

Tl = Mo + M7 + U + Moty (49)

by maximum likelihood over the same time period as in our empirical section. We get

o = 0.0028, (50)
iy = 0.90, (51)
iy = 0.57. (52)

Picking uy = 0 and plugging the estimates (50)-(52) into equation (49) gives an estimated
path, {i;};_,, for inflation shocks. The resulting sequence {i} is identical to the one we use
in Section 2 to construct inflation betas, as they are both generated by the same estimation

procedure. The standard deviation of the estimated inflation shocks is

std (1) = 0.0028 (53)
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and its mean is essentially zero. We map equations (50)-(53) to the model’s inflation parameters

as follows:

[ir = 1ig = 0.0028,
pr = 10y = 0.897,
b = std () = 0.0028,

&x = 1y X std (1) = —0.0016,

where we identify the model’s u; with 4;/std (i) so that it has unit standard deviation.
To calibrate the consumption parameters, we use data on real consumption growth, the
series for the nominal-real covaraince NRCC constructed in equation (11) and 4, to run the

following full-sample OLS regression:
ACt+1 = 4o + g17T¢ + ga X NRCtC_;_lﬁtJrl + gs X NRCtClALt + g4ﬁt+1 —+ g5ﬁt + Et+1, (54)

where ¢g;, ¢ = 0,1,...,5, are the regression coefficients we estimate and ¢,,; is a mean-zero
regression residual. To translate regression (54) into the model’s consumption process, given
by equation (17), we equate the data-constructed N RCC with its model-implied analog Ht(u),
so that

NRCE = hyy + é%. (55)

With the aid of equation (55), comparing equation (17) to equation (54) gives a mapping from

Gi, std (¢;) and std (1) to the model’s consumption parameters:
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pe = go + g1ptx = 0.0021,

pe = g1 = —0.126,
0. = std (&) = 0.0032,

O
c = — = 0.0797.
¢ std () o
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Table 1: Descriptive statistics

This table reports descriptive statistics in annualized percentages for CPI inflation (II;),
ARM A(1, 1)-innovations in inflation (ur,), consumption growth (C}), the aggregate stock mar-
ket excess return (R,,;), and the one month t-bill return (Ry;). AR(1) is the first-order auto-
correlation coefficient. The sample period is from July 1962 to December 2014, which adds up
to 630 months.

IT; Uty ¢ Cy Rm,t R fit

Mean 3.93 0.11 197 6.45 4.85
St. dev. 1.11 0.85 1.13 1544 0.89
AR(1) 0.62 0.15 -0.17 0.07 0.97

Correlations

I1, 1 079 -0.18 -0.13 0.50
(e 1 -0.17 -0.12 0.15
Cy 1 0.17 0.01
Ry 1 -0.09
Ry, 1
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Table 3: Overview of inflation beta sorted portfolios
This table presents the set of ten inflation beta-sorted portfolios and our resulting estimates
of the unconditional inflation risk premium, denoted HLIP, MCIP, and CSIP. HLIP is the
High-minus-Low decile spreading portfolio from this sort. MCIP is a maximum correlation
mimicking-portfolio that is constructed from a multiple regression of inflation innovations on
the ten inflation beta sorted portfolios. CSIP is the inflation risk premium estimated from a
cross-sectional regression of indvidual stock returns on lagged inflation betas (controlling for
size, book-to-market, and momentum). Panel A presents ex post inflation betas, S post, that
are estimated with a simple regression of portfolio returns on inflation innovations over the full
sample. t-statistics are in parenthesis and use Newey-West standard errors with lag length one.
Note that MCIP and CSIP are scaled to have the same post-ranking inflation beta as HLIP.
Panel A also presents summary statistics for each portfolio’s rolling inflation beta that is esti-
mated as explained in Section I.B, S poste- Next, we present annualized performance statistics
and CAPM «’s for the portfolio returns over the full sample from July 1967 to December 2014
(Panel B) and split around December 2002 (Panel C).

H 2 3 4 5 6 7 8 9 L HLIP MCIP CSIP
Panel A: Ex post inflation exposures
B post -0.02 -1.03 -1.37 -1.86 -1.94 -2.40 -2.13 -2.85 -2.95 -3.02 3.00 3.00 3.00
t (-0.01) (-0.68) (-0.91) (-1.26) (-1.34) (-1.59) (-1.36) (-1.82) (-1.85) (-1.68) (4.38) (5.82) (4.69)
Avg. Bripostt -259  -2.83 -3.05 -3.58 -383 414 -398 471 -469 -4.87 2.28 2.67 2.71
St. dev. Brpesty  3.61 2.78 2.78 2.53 2.83 2.73 2.79 2.98 2.95 3.25 1.36 1.02 1.40
Panel B: The inflation risk premium over the full sample
Avg. Ret. 5.26 7.29 7.85 7.59 8.53 8.28 8.10 8.50 8.76 9.49 -4.23  -439  -4.21
t (1.59)  (247) (2.88) (2.85) (3.20) (3.07) (2.94) (3.02) (2.99) (3.00) (-2.08) (-3.06) (-2.22)
Sharpe 0.23 0.36 0.42 0.41 0.46 0.44 0.43 0.44 0.43 0.44 -0.30 -0.44 -0.32
QoAPM -2.03 0.52 1.39 1.23 2.14 1.81 1.55 1.85 1.87 2.18 -4.21 -3.18  -3.79
t (-1.15) (0.38) (1.31) (1.21) (2.07) (1.68) (1.34) (1.48) (1.35) (1.38) (-1.83) (-2.06) (-1.80)
Panel C: The inflation risk premium split around 2002
Pre-2002
Avg. Ret. 1.84 4.42 5.74 5.87 6.97 6.96 6.95 7.84 8.38 9.33 -749 585  -6.81
t (0.48) (1.25) (1.76) (1.82) (2.12) (2.04) (1.95) (2.14) (2.18) (2.26) (-3.01) (-3.33) (-2.91)
Sharpe 0.08 0.22 0.31 0.32 0.38 0.37 0.35 0.39 0.40 0.41 -0.54  -0.59  -0.52
QCAPM -3.58 -0.73 0.80 0.98 2.01 1.87 1.72 2.51 2.79 3.46 -7.04 -4.71 -6.02
t (-1.81) (-0.44) (0.63) (0.79) (1.63) (1.38) (1.17) (1.58) (1.62) (1.76) (-2.70) (-2.76) (-2.55)
Post-2002 minus Pre-2002

Avg. Ret. 13.53  11.34 8.37 6.80 6.17 5.25 4.58 2.62 1.50 0.62 12.92 5.79 10.30
t (1.54)  (1.56) (1.23) (1.03) (0.93) (0.82) (0.72) (0.41) (0.23) (0.08) (2.58) (1.71) (2.21)
Sharpe 0.53 0.53 0.41 0.35 0.33 0.32 0.32 0.22 0.19 0.11 0.92 0.58 0.79
acAPM 4.28 3.76 1.29 0.05 -0.25 -0.78 -0.81 -266 -3.38 -5.13 9.41 5.37 6.96
t (1.05)  (1.32) (0.56) (0.02) (-0.11) (-0.38) (-0.39) (-1.22) (-1.35) (-1.77) (1.85) (1.40) (1.52)
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Table 6: Calibrated Parameters of the Model
This table reports the configuration of the parameters used in the calibration of the model.
The model is calibrated on a monthly decision interval.

Preferences
Discount factor o 099
Elasticity of intertemporal substitution v 2
Risk aversion coefficient v 145
Inflation
Mean of inflation rate e 0.0028
Inflation AR(1) coefficient pr 0.897
Inflation MA(1) coefficients o= 0.0028
& -0.0016
Consumption
Mean of real consumption growth te 0.0021
Exposure of expected consumption to inflation p. -0.126
Volatility of consumption-specific shocks o. 0.0032
Consumption exposure to inflation shocks & 0.0797
Nominal-real covariance
Mean of nominal-real covariance wo 0.0017
Persistence of nominal-real covariance v 0994
Volatility of nominal-real covariance o, 4.86 x 1074
High inflation beta portfolio
Mean of dividend growth pg 7.6 x 1074
Exposure of expected dividends to inflation pg  -0.812
Exposure to consumption-specific shocks oy -0.074
Dividend exposure to inflation shocks oy 4.048
&g -2.26
Low inflation beta portfolio
Mean of dividend growth pr 0.0073
Exposure of expected dividends to inflation pr  -1.175
Exposure to consumption-specific shocks o, -0.051
Dividend exposure to inflation shocks ¢ 4.85
& -3.34
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Table 7: Calibrated Moments

This table shows that the model can match means and standard deviations of returns and
betas, as well as the slope coefficient from regressing returns on high-minus-low portfolio on
the nominal-real covariance.

Data Model
E[r,] 3.93 3.93
[0cm] o () 1.11 2.52
[Ocm]
E[Ac,] 1.97 2.50
[Ocm] o(Act) 1.13 2.01
[Ocm]
corr(ms, Acy) -17.8% -3.6%
[Ocm]
E[Ry] 5.26 6.16
[Ocm] o(Rp) 22.7 25.9
[0Ocm] E[B, ] -2.59 -2.22
[Ocm] o (Bu.m) 3.61 3.17
[Ocm)]
E[R;) 9.49 9.00
[Ocm] o(Ry) 21.78 18.29
[0cm] E[B,.1] 487 4.5
[Ocm] o(By,1) 3.25 2.65
[Ocm)]
O(Bu,HLIP) 1.36 0.52
[OCHI] U(RHLIP) 14.04 8.71
[OCIH] LNRC,HLIP 4.47 4.33
[Ocm]
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Table 8: Industry composition of inflation beta sorted portfolios

This table presents the industry composition of our sort. For this exercise, we use the classifica-
tion into 48 industries from Kenneth French’s web site. In each sample month, we find for each
industry the stocks that have inflation beta below or above the median inflation beta in the
full cross-section and translate this to the fraction of an industry’s total market capitalization
that has below or above median inflation beta. In the first three columns we report results for
the top 10 inflation hedgers, which are those industries with on average the largest fraction of
market cap in the above median inflation beta portfolio. For these industries we report the
average allocation to the above median portfolio (“% of market cap (fn,;; >median)”) as well
as the fraction of total sample months in which the allocation to the above median portfolio is
larger than 50% (“% of months”). The next three columns present analogous evidence for the
top 10 worst inflation hedgers, which are those industries with on average the largest fraction
of market cap in the below median inflation beta portfolio. The sample period is July 1967 to
December 2014.

Top 10 best inflation hedgers Top 10 worst inflation hedgers

% of market cap % of market cap

(Bri+ >median) % of months (B¢ <median) % of months
1 Oil 0.77 0.80 Other 0.82 0.94
2 Gold 0.73 0.76 Books 0.77 0.95
3 Utilities 0.66 0.68 Aerospace 0.76 0.89
4 Mines 0.64 0.70 Banks 0.74 0.84
5  Agriculture 0.62 0.71 Insurance 0.74 0.88
6  Paper 0.61 0.66 Meals 0.73 0.82
7 Computers 0.60 0.67 Lab Equipment 0.72 0.82
8  Steel 0.58 0.59 Clothes 0.71 0.79
9  Smoke 0.58 0.66 Textiles 0.71 0.82
10 Food 0.57 0.59 Personal Services 0.70 0.85
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8 Internet Appendix to “Time-Varying Inflation Risk

and the Cross-Section of Stock Returns”

This Internet Appendix presents a detailed description of the block-bootstrap and reports

results from a variety of robustness checks.

A Bootstrap algorithm

The block-bootstrap algorithm associated to the regressions of Table 2 and Table 4 consists of
the following steps:

1. In each replication m = 1,...,500, we construct pseudo-samples for both consumption

growth and inflation by drawing with replacement T, overlapping two-year blocks from:

m m . .m _m m
{AC 100 W 1goa s E=8T",85", . 8T, (56)
where the time indices, s7*, sy',..., sy , are drawn randomly from the original time se-
quence 1,...,T. The two-year block size is chosen to preserve the (auto-) correlation

between consumption growth and inflation in the data and to respect the estimation
setup in Equations 5 and 6 of the paper. Additionally, it is a way to conserve the size
of the cross-section in the resampled CRSP file (see Step 3 below). We join these blocks
to construct a monthly time-series matching the length of our sample from July 1967 to

December 2014.

2. For m = 1,...,500, we run the two-stage tests described in Section 2.4 for the artificial

data:
K K, K . 1Kk
ACH 1 = dfn,O + din,l(ag,t—l + brli,t—lmﬂ) + €/} 1.4 1, Where (57)
;T-Li-lzs—i—K = arlr(z,t—l + anm,t—lngn + e?—ﬁ-l:s-&-K: §= 17 "'7t - K’ (58)
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and save the estimates d%%, d%, and bl 1, for K = {1,3,6,12}. The bootstrap standard

m,00 “m,1>»

errors reported in Table 2 are calculated as the standard deviation of df;ff) and dfnli over

the 500 bootstrap replications. The bootstrap estimates, bﬁytfl for K = 12, are going to
be used to get the bootstrap standard errors for Table 4 in the paper.

. To be precise, using the same time indexes s{',sy',...,s7 , we construct 500 block-
bootstrap samples for all firms ¢« = 1,...,] in the CRSP file. To be consistent with
the data, we bootstrap both returns, Ryy1 = {R1t+1, Royt1, - .., Rre41}, and firm charac-
teristics, Z; = {MV,, BM;, MOM,}, with, e.g., MV, = {MVy 4, MVay, ..., MV}, such
that:

{Rﬁ1:t+24> Z£+24_1}, t=s1"55",..., S?m- (59)

Notice that the characteristics are lagged by one month just like in the data. We join
these blocks to construct 500 artificial CRSP files matching the length of our sample.

. In each replication, we estimate at the end of month ¢ and for each artificial stock ¢ its
exposure to ARMA(1,1)-innovations in inflation, denoted uff,,,. The ARMA model is
estimated for the inflation series described under Step 1. The inflation betas are estimated
using the WLS-Vasicek procedure described in Section 2 of the paper. We require that an
artificial stock return series has at least 24 out of the last 60 months of returns available to
estimate inflation beta, 8ff; ;. Since many stocks have some missing returns in the CRSP
file, due to late introduction or early exit, the overlapping block-bootstrap reduces the
number of firms that satisfy this requirement relative to the data. However, we end up
with about two-thirds of the number of firms that we use in the data in each bootstrapped
cross-section. This indicates that the cross section is large still and to the extent that

this reduction adds noise, this should bias against finding our results to be significant.

. For m = 1,...,500 and at the end of each month ¢, we then sort the artificial stocks

on these inflation betas and their market values to construct the ten value-weighted

65



size-controlled inflation sorted portfolios that feature prominently in the paper, R}, =
{Righ 1> B5i1s -+ R i1 }- The three bootstrap estimates of the inflation risk pre-
mium are constructed as follows. First, we take the High-minus-Low spreading portfo-
lio from this sort: R pii1 = Bitigniv: — Biowir1- Second, we regress the artificial
ARMA(1,1)-innovations in inflation, uff,,, on the inflation sorted portfolios to construct

the maximum correlation inflation mimicking portfolio:
ury 41 = intercept,, + weights,, x R, | + el (60)

such that Rjjo;p,,, is the portfolio return weights;, x R}, ;. Finally, we run a cross-
sectional regression of returns on lagged inflation betas, where we control for the firm

characteristics:

Rﬁ+1 = lm,O,t + lm,H,tﬁltnLin + lZ,tZ;Z?t + uﬁla (61)

where we save the time-series of coefficient estimates [,, i1 +, representing our third estimate

of the inflation risk premium R{%s;p,. ;-

. For each replication, we then run the predictive regression described in Section 3.2 of the
paper. That is, we regress returns on the artificial inflation portfolios and risk premiums
(compounded over horizons H = 1, 3,12 months) on the lagged nominal-real covariance

(i.e., the bootstrap coefficient estimate b7, , from Step 2 above) using:

{ Ry vus s Bitipeiirm Biicipiiern Besippitasnt = Lmo + Lm,NRcbﬁ,tq + Eiin-

(62)
The timing in the different steps of the bootstrap is consistent with the data so that the
timing of the left-hand side returns is strictly after the timing of consumption growth
and inflation used to estimate the right-hand side nominal-real covariance. We use the

standard deviation of the estimates L, and L, yrc over the 500 bootstrap replications
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as the standard error for the predictive regressions of Table 4.

B Supplementary Results

67



€000°0
Gesoo

rea-d  (zozz'0) (200L0-) (£289°1-) (cL1¥e) (g609°1-) (910L°0) (9g62°1-) (891€°0-) (120€0-) (0L01°2) 7
AT L1000 160000 0220°0-  8SE0°0  ¥RI00- 68000  @STO0-  TE00'0-  6200°0-  ZSI00  SHSrom

T 6 8 L 9 g ¥ € ¢ H

"FTOG QU 0% L96T A st porrod ojdures oy ], -9v]

T UM }SOA\-AOMON oIe SIOIId prepue)g -0l = spybrom : Oy :3893-,7 juiol e jo onfea-d oy pue 3y pajsnlpe oy
Juesoxd Os[e om UOISSOIFAI SIUY 10 O[IDOpP BIO( UOIIRPUIL [PRO UL SOI[0J1I0d 991} o} JO soFrIoAe Pajysrom-Tenbo
oIR 1soI0jul JO sorojprod uo} oY) ‘uoy], SANOIS-oZIS 90IY) PUe SO[IOP-RI9( UOIIRPUI UD) JO UOIIDOSIOIUL 9Y) Je
sorfoyyrod ()¢ ojur s¥D0Is JSYO) [[® SurI0s Aq pejonajsuod are sorjojprod oy, Ta + Ty x spybrom + jdadi2jul
= THTn :sorjojyrod ©)oq UOIJRPUI USY O} UO UOIRPUI U suoIyesouul-(T7)VINYVY o) Sursseidor Aq punoj ore
spyStem asot T, “(JIDIN) orojriod SUmDIIW UOIYRPUI UOIJR[OLIOD WNIIIXRU ) JO s)ySom oY) sjuesald a[qe) s T,
or[ojyiod Supporwurur uoleyul oY, VI S[qLL

68



we1)  (9L1) (Fpz) (0871 (9¢1-) (ge1-) (06°0) (260°) (81°0-) (L00) (28°0) (8171) (0G°T) ]

g8L 0S¢ 6901 VoS- L9e- 196~ ¥0T-  6TT-  L€0-  FI0  FLT €T'E GEG WdVO0
0,0  6V0 S0 00 €10 g0  0g0 ¥g0 80 I€0 680  9¥0 @S0 odreyg
(6e2) (921) (s82) (zo0o) (zzo) (9z0) (2600 (zr0) (880) (zo1) (gz1) (BFT) (<9T) 7

77’6 €S 86°TT 11°0 0r'1 a9l Ve 8¢V 4 76°G 0¢L 916 60T Y SAy

SUIUOW )Y \J UBIPOW MO[OE-SNUI-0A0]

(¢sz) (gLe) (wre) (81 (891) (es1) (ov1) (eb1m)  (ec1) (020) (0F0) (Lv0-) (167T-) 7
8T'L-  €¥e- 698 ¢o¥  LTe  61'€ €T ¥ Tt .60  LG0 680~  LEV- WAV
16°0-  290- 090- T¥O0 680 680  ge0  Se0 980 680 LZ0  8T0 €00 odreyg
(¥8¢) (s¢1¢) (L6T) (e0e) (e61) (c61) (B21) (9r1) (0s1) (8%1) (Le1) (g6°0) (21°0) ]

06'L-  €V9-  T6'8- 776 GG'8 L8L 9.9 199 879 LG 009 0L°€ €60 1Y Ay

SUIUOWL )3 N WBIPIUL MO[OE]

dISO  dIOW  dI'TH 1T 6 8 L 9 g 4 € 4 H

"SYPUOUW )3 \J 9FRIOAR MOO( PUR QAR UM)O( SOURIOPIP oYY pue d5eIoAR MO[R] ST SOy N
QIOTM ST[JUOWL Ul SWINjal orjojirod o) 10J 8,0 NJV) Pu® sonsme)s soueuriojrod pozipenuue sjuosold o[qe) sIy .
syyuowr SNy N 98eIoAe mo[oq pue aaoqe ur jds wniwoaad SH uorjepgul oYY, :Z'VI O[qRL

69



GETI 8T'¢ 80°0T L9°L 9T'IT  LG€T 08’8 298 66°CI 008 ¢90T 866 d

(oce) (6v1) (812) (100 (L9%) (e9%) (s1%) (8eq) (192 (e1e) (992) (657C) 7
g6'e LT ey eve  ore  OVG  GLE€ 89T  S¥G L€ 8€T 609 OUNT
(69¢) (ve) (ee1-) (o) (1ee) (0¢1-) (29%) (68¢) (PG1-) (69C) (eLe) (6871 7
69°¢-  L6'C- 06'T- TIL€  FIV-  09C  L6'€-  V6'E€-  89C  LIF- 889G L¥P- 07 ZI=H
9¢'e  OV0  FLT  9¢T  S0€  68¢ LT T0T  ¥LEe  8eT  Cr'e  9G°€ T
(09¢) (801) (¢re) (#1e) (7o) (e90) (Lee) (10c) (s¢e) (eze) (¢ve)  (8L70) 7
607  SOT  0LE  €9C  €0€ 69T €€ 65C 08T G6E  €8€  FOG  OUNT
(L9¢) (80¢) (Lr1-) (19%) (0g¢e) (ev'1-) (89%) (1L¢) (6v'1) (29¢) (00%) (¥1g) 7
6G6'¢-  €LZ-  P9T-  €9e- 08¢~ GT'e-  €6'¢-  €9e-  9¢e- oI~ G9G-  CTP- o7 ¢=H
80T  €00- 690  ¥90 €0  FOT 6.0 €O 0T 90 080 10T T
(Fze)  (FLo) (es1) (081) (76'1) (coe) (b6'1) (ce1)  (L1@)  (L871) (002) (L£7) 7
vLe  6L0  €Ce  9Te  €9T GOV Sge €8T 9TF  8¢E 6T €6F  QUNT
(veer) (v8e) (9r1-) (19e) (eoe) (8e'1-) (8¢g) (oge) (Lv1-) (0ge) (L6¢) (11%) 7
g8'e- T8¢ LLT-  T6'e-  T8e  €ge- 0TV 69'¢€-  Lve- IV 6L°S- €T o7 I=H
dISO  dIDIN  dITH  dISD  dIDIN  dITH  dISD  dIDIN dI'TH dISD dIDIN dI'TH HH1 Ty
INGAA NDAA INEAT INAVD

(syurod oSejuooiod ur) L3y pojsulpe oy pue ‘sSel [ ypm
SIOIIO PIPURIS JSOAN-ADMON UO poseq sosoyjualed Ul SO1)SIPe)S-7 SUIPUOdSOIIOD [IIM ‘SHUSIDIJO0d POJRuI}So oY)
UOISSI30T oo 10§ 110dox OA\ (4 DY \/) 9OUBLIBAOD [BOI-[RUIHOU 97} UO SUINJOI HUOW-OA[OM] PUR ‘-00I()} ‘-0UO
Surdde[1oao ssa1do1 pue (JIS) pue ‘JIDIN ‘dITH) wniwold YSLI UOjePul o) JO SOJRTIIISO 901} INO 9JR[NO[RD oM

‘01npoood Surros varyeuId)® Yoo 104 “(ANI ‘A0Ud “TINH ‘dINS ‘ILMIN) IN¢Ad Pue ‘(IWOIN Pu® “TINH ‘dINS
‘IMIN) INOAA “(TINH ‘NS ' IMIN) INEAA (LMIN) INd VO 943 JO 810308] Surorid-josse SIeuypuaq o1y 03 soansodxo
S,3[901S I0J ‘R}9( UOIIRPUI SUTIRUIIISO USYM *9°T ‘OJUR X [OIJU0D dM USM PUIIXS SINSAI INO IOJoYM SHS® 9[(e]} SIY T,

©)9( UOIJePUI SUIRUIIISO UM SIO)IR] JIRWIUI( J0J SUI[[0IIU0)) :£'V] dIqel

70



eIV LT9E €96 TH0T 0061 C0Ge  998T  99°LT 0g'¢T  TO0T  LS6 6T°L g

€60~ 020" 250" ANIg

89'0- €S0~ 18°0- A0Ud g
¥I0o- 110" ce0- nong

o 110 2e0 91'0-  91°0- 020" Iro-  ¢lo- 2070~ TIVHg

07'0-  S€0- 86°0- 9¢°0-  TE€0- 7570~ Ge’0-  1€°0- 750" ansg

€0°0- 020" 1070~ GO0  T1°0- 600 800 600" 91°0 90 110 01°0 LA

(sog) (8L1)  (991) (see) (60T)  (191) (8¥2) (sTe) (L0e)  (9re) (cso) (tee) ¢

e L8C AN e 9T are 07 80°¢€ 96 95T ¢oe ov°g OUNT

(tzo) (9¢0)  (1¢0)  (160-) (89°0-) (120) (F02) (e81-) (bL1-)  (9r¢) (981-)  (291-) ¢

€0 ¢80 ST'T eFI- 8670 870 60¢- 1€ ege- 08P 99°er 86°F- o7 Z1=H

789z SV'Se €e'8c  Fe8  GTSl 08°L A I A ¢6'9 0LZ 818 €T oy

v20- 620" 970~ ANIg

€L0-  LV0- 88°0- 404 d
900~ €0°0- 11°0- nong

100 000 110 LT0-  LT0- oro- ¥I°0- 910" 80°0- TNHg

oF0-  €£°0- 09°0- €0~ ST0- ve0- ce0- ST0- ve0-

60°0-  61°0 20°0- c00- €10 L0°0 100~ 210 600 L00- 91°0 10°0

(cr1) (oL1)  (961)  (61) (602)  (1€2) (ere) (ere) (Lee) (e (avo) (eve) 1+

60¢  €2C 98°¢ 19¢  89¢ STy 98¢ 6LT 687 L4 Al 91°G OUNT

(82°0) (zg0)  (s20) (g60-) (er1-) (9017 (e¥1-) (1971-)  (16T-) (e871-) (1) (e61-) ¢

Vo1 990 161 LT I8TT- Ve e SI'e 69°¢-  6F'e  0TE o8- o7 ¢=H

V55T 8€°1G €0Te S8V Ll 181 c0e 187l 86°0 GIT  8L0T 090 =

6€0- 620 250" ANTg

¥8°0-  ¢h0- €6°0- A0Ud
e€r0-  T0°0- 01°0- wong

100 100 P10 €T0- V10 Cro- 610~ FI0 aro- TN H

ve0- 120 ¢e0- 010~ 010 200~ 010~ 010" 2070 ansg

910~ G20 01°0- 110~ 120 €00- 600~ 120" 100~ L00- 020" 000 LA

(og1) (¢e1)  (ee1)  (egm) (@) (e81)  (e21) (erm) (66T  (861) (e61)  (11g) 4

e 081 €0°¢ e 18T 78°¢ e ¥ET ST¥ e 89T Aid DUNTT

(901) (91°0)  (86'0)  (090-) (9¥'T-)  (L01) (ee1-) (¢¢1-) (19T (1819 (L0e)  (¥8°T) 4

G661 T0 e8'T ST 1~ VeT W €9 18T e 6Le STe- 169~ o7 I=H

dISD  dWIDIN dINI'TH dISO  dINIDIN JINITH  dISD  dINIDIN JdINITH  dISD  dJINIDIN  dINI'TH HEETH Ry

INGAA NDAA NeAd INdVD

OUNT S0 \J U0 JuRdgeod pue ¢ 07 “4deorojur oyy 10§ ATUO (SSR[ [ YIM SIOLD PIRPUR)S JSOAN-A0MON
uo poseq) sosoyjuated ur sorysiyeys-y juesord om ‘voeds oazesuoo of, ‘(sputod oSejusdrod ur) L3y pejsulpe oy pue
SIUSIOIJO0D POJRUIIISS A} UOISSOISaI [oea 10J sjuasard op\ 'S10j0e] 9pls puey JYSLI oy} pue sorjojiod uoryegur
OpIS pURY-YJo[ oY) Yl0g U0 suInjal punodwod am ‘SUINol JIUOW-oA[oM) pue -oo1y) Surdde(roso Sursn s1s9) o)
0 (WO Pue “TINH ‘gINS ‘I3IN) IWOAA pue (TINH ‘dINS ‘LMIN) IWeAA (IL3MIN) INdVD 23 03 amsodxd
ST0OURIOAUIIIUOD UO SB [[oM S ( )Y ) 9OURLIBAOD [RII-[RUIIOU 973} U0 J[SD) PUe ‘JIDIN ‘dI'TH JO SUINjor ss01801
M ‘9SIDIOXD SIY) 10 "SI1030v} Sumrid-jesse yIewpouaq oy} 0} sorjojrod pajIos uorjegul o) Jo aansodxe 10§ jsod
X0 [0IJU0D 9M UM pua)xe wniweld YSLI UOI)RPUI SUIAIRA-9UIT) S} UO SUOISN[OUO0D INO IdYI_dUM SYSB 9[qe} SIY T,

aansodxe J10j0e} yrewryous(q JI0J SUI[[oIjuod wniwald SLI uorjegul oy} SurIpaid :F VI °9[qel

71



Table TA.5: Predicting the inflation risk premium controlling for benchmark pre-
dictors

This table presents coefficient estimates from predictive regression of inflation portfolio returns
on lagged NRC controlling for either the dividend yield (DY), default spread (DS), and term
spread (TS) or the consumption-wealth ratio (CAY). All control variables are standardized
just like NRC. To conserve space, we present t-statistics in parentheses (based on Newey-West
standard errors with H lags) only for the intercept, Ly , and coefficient on NRCS, Lygc.

HLIP MCIP CSIP HLIP MCIP CSIP

H=1 L, 423 -4.39 421 423 -439 -421
t (-1.95) (-2.92) (-2.07) (-1.95) (-2.92) (-2.08)
Lyrc 586 326 313 452 231  3.88
t (2.02) (1.75) (1.15) (1.82) (1.31) (1.65)
DY 192 090  -1.79
DS 148 012 028
TS 036 -1.31  -0.16
CAY 012 -1.01  -0.16
R? 043 018 016 050 036 041

H=3 L, 427 419 -3.93 427  -419  -3.93
t (-2.04) (-2.90) (-2.19) (-2.03) (-2.89) (-2.19)
Lyre 681 399 369 517 319  4.09
t (2.39)  (2.17) (1.54) (2.09) (1.90) (1.93)
DY 241 126  -1.35
DS 168 008 0.9
TS 158 -024  0.38
CAY 004 -0.33  -0.55
R? 310  1.97  1.84 231 203  2.02

H=12 L, 437 -4.25 -394 437 425  -3.94
t (-1.76)  (-2.66) (-2.35) (-1.67) (-2.63) (-2.31)
Lyre 719 450 426 529 346  4.39
t (2.13)  (2.30) (1.81) (1.81) (2.00) (2.35)

DY 2.34 1.36 -1.63
DS 2.53 0.42 2.05

TS 3.32 1.05 0.84
CAY -0.24  -0.71 -0.30
R? 11.93 8.59 11.82 6.50 7.71 9.55
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Table IA.6: Inflation risk premium (predictability) within size groups

This table presents unconditional performance and NRC-predictability for the returns of High-
minus-Low inflation risk spreading portfolios and within size groups. Micro, Small, and Big
stocks are separated at the 20th and 50th percentile of NYSE market capitalization and we
construct both value-weighted and equal-weighted portfolios. Panel A presents average returns
over the full sample as well as for the sample split around 2002. Panel B presents results for
a predictive regression of inflation portfolio returns on lagged NRC. t-statistics are reported in

parentheses.

Value-weighted Equal-weighted

Micro  Small Big Micro  Small Big
Panel A: Average returns in subsamples
Full sample
Avg. Ret. -3.65 -3.73 -531 -0.15 -4.06 -5.24
t (-2.07) (-1.53) (-1.88) (-0.09) (-1.74) (-2.06)
Pre-2002
Avg. Ret. -550 -732 -9.66 -257 -7.50 -8.95
t (-2.63) (-2.69) (-2.66) (-1.25) (-2.89) (-2.76)
Post-2002 minus Pre-2002
Avg. Ret 7.30 14.25  17.20 9.58 13.63  14.66
t (1.73)  (2.19) (2.76) (2.22) (2.14) (2.45)
Panel B: Predictive regressions

H=1
Lo -3.65 -3.73 531 -0.15 -4.06 -5.24
t (-2.01) (-1.48) (-1.76) (-0.08) (-1.67) (-1.91)
Lyge 2.99 5.97 4.46 2.55 5.78 4.86
t (1.64) (2.42) (1.53) (1.40) (2.43) (1.88)
R? 0.33 0.88 0.26 0.19 0.90 0.46
H=3
Ly -3.65 -380 -5.29  -0.02 -416 -5.25
t (-2.13) (-1.53) (-1.86) (-0.01) (-1.75) (-1.99)
Lyre 3.80 6.79 4.83 3.39 6.57 5.44
t (2.14) (2.73)  (1.77)  (1.96) (2.80) (2.24)
R? 1.91 3.04 1.11 1.55 3.04 1.77
H=12
Lo -4.10  -4.02  -4.79 0.43 -4.40  -4.95
t (-1.88) (-1.45) (-1.41) (0.18) (-1.72) (-1.56)
Lyge 4.25 7.32 4.23 3.99 7.06 5.02
t (2.20) (2.65) (1.40) (1.70) (2.84) (1.85)
R? 6.05  9.65 245 427 1029  3.98
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Table TA.7: Alternative measures of inflation risk

This table asks whether our results for alternative measures of inflation risk. For the first
column of results, we estimate exposures to ARMA(1,1) innovations in inflation by OLS using
a standard 60-month rolling window and perform a single sort, that is, without controlling
for size. For the remaining four columns, we vary the inflation measure, but estimate betas
using WLS and shrinkage, as described in Section ? of the paper. In column two, we use
raw inflation (II;). In column three, we use an AR(1)-model to proxy for inflation-innovations
(uﬁftﬂ). In column four, we use the difference between inflation and the short-rate to proxy
for inflation-innovations (II; — Ry;). In column five, we perform a truly out-of-sample exercise
using real-time vintage CPI inflation (IT}®~%™¢)  For this exercise, we skip a month after
portfolio formation, thus taking into account the reporting delay in inflation data. In all five
cases, we calculate the returns of the High-minus-Low inflation risk spreading portfolio (HLIP).
We present in Panel A average returns in subsamples; and in Panel B, a regression of returns
on the lagged nominal-real covariance (NRCC). We report for each regression the estimated
coefficients, with corresponding ¢-statistics in parentheses based on Newey-West standard errors
with H lags, and the adjusted R? (in percentage points). The sample period is from July 1967
to December 2014, except for ITI7** =™ which sample ends in December 2012.

Inflation measure Urty I, “ﬁ,}tﬂ I, — Ry, IIjcel-time
Inflation beta method OLS, No size control = WLS — WLS WLS WLS

Panel A: Average returns in subsamples

Full sample

Avg. Ret. -2.72 -3.79 -3.88 -5.13 -1.65
t (-1.01) (-1.75) (-1.93)  (-2.30) (-0.75)
Pre-2002
Avg. Ret. -6.55 -7.49 -6.84 -9.03 -4.96
t (-2.01) (-2.86) (-2.85)  (-3.36) (-1.89)
Post-2002 minus Pre-2002
Avg. Ret. 15.15 14.67  11.69 15.45 15.03
t (2.53) (2.79) (2.34) (3.04) (2.71)
Panel B: Predictive regressions
H=1
Ly -2.72 -3.79 -3.88 -5.13 -1.65
t (-0.99) (-1.66) (-1.83)  (-2.25) (-0.72)
Lnre 4.98 6.03 3.92 6.88 6.88
t (1.89) (2.59) (1.83) (3.01) (2.90)
R? 0.42 1.19 0.49 1.49 1.61
H=3
Lo -2.88 -3.89 -3.89 -5.30 -1.94
t (-1.16) (-1.86) (-1.93)  (-2.59) (-0.91)
Lyre 5.50 6.69 4.61 7.69 7.35
t (2.22) (2.99) (2.19) (3.53) (3.10)
R? 1.85 3.86 2.03 5.34 4.68
H=12 74
Lo -3.11 -3.89 -3.92 -5.48 -2.06
t (-1.10) (-1.74) (-1.73)  (-2.48) (-0.96)
Lyre 5.38 7.35 5.08 8.55 7.84
t (2.11) (3.25) (2.33) (3.98) (3.35)

R? 5.29 14.30 7.26 18.83 16.12
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